1
|
Mujahid M, Umar Farooq M, Wang C, Arkook B, Harb M, Ren LF, Shao J. An Opportunity for Synergizing Desalination by Membrane Distillation Assisted Reverse-Electrodialysis for Water/Energy Recovery. CHEM REC 2024; 24:e202400098. [PMID: 39289830 DOI: 10.1002/tcr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.
Collapse
Affiliation(s)
- Muhammad Mujahid
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
2
|
Zhang K, Tang CS, Jiang NJ, Pan XH, Liu B, Wang YJ, Shi B. Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. ENVIRONMENTAL EARTH SCIENCES 2023; 82:229. [PMID: 37128499 PMCID: PMC10131530 DOI: 10.1007/s12665-023-10899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering. It adds a new perspective on the feasibility and difficulty for field practice. Analysis and discussion within different parts are generally carried out based on specific considerations in each field. MICP may bring comprehensive improvement of static and dynamic characteristics of geomaterials, thus enhancing their bearing capacity and resisting liquefication. It helps produce eco-friendly and durable building materials. MICP is a promising and cost-efficient technology in preserving water resources and subsurface fluid leakage. Piping, internal erosion and surface erosion could also be addressed by this technology. MICP has been proved suitable for stabilizing soils and shows promise in dealing with problematic soils like bentonite and expansive soils. It is also envisaged that this technology may be used to mitigate against impacts of geological hazards such as liquefaction associated with earthquakes. Moreover, global environment issues including fugitive dust, contaminated soil and climate change problems are assumed to be palliated or even removed via the positive effects of this technology. Bioaugmentation, biostimulation, and enzymatic approach are three feasible paths for MICP. Decision makers should choose a compatible, efficient and economical way among them and develop an on-site solution based on engineering conditions. To further decrease the cost and energy consumption of the MICP technology, it is reasonable to make full use of industrial by-products or wastes and non-sterilized media. The prospective direction of this technology is to make construction more intelligent without human intervention, such as autogenous healing. To reach this destination, MICP could be coupled with other techniques like encapsulation and ductile fibers. MICP is undoubtfully a mainstream engineering technology for the future, while ecological balance, environmental impact and industrial applicability should still be cautiously treated in its real practice.
Collapse
Affiliation(s)
- Kuan Zhang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Chao-Sheng Tang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Ning-Jun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, 211189 China
| | - Xiao-Hua Pan
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Bo Liu
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yi-Jie Wang
- Department of Civil and Environmental Engineering, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
3
|
Gujjala LKS, Dutta D, Sharma P, Kundu D, Vo DVN, Kumar S. A state-of-the-art review on microbial desalination cells. CHEMOSPHERE 2022; 288:132386. [PMID: 34606888 DOI: 10.1016/j.chemosphere.2021.132386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The rapid growth in population has increased the demand for potable water. Available technologies for its generation are the desalination of sea water through reverse osmosis, electrodialysis etc., which are energy and cost intensive. In this context, microbial desalination cell (MDC) presents a low-cost and sustainable option which can simultaneously treat wastewater, desalinate saline water, produce electrical energy and recover nutrients from wastewater. This review paper is focussed on presenting a detailed analysis of MDCs starting from the principle of operation, microbial community analysis, basic architecture, evolution in design, operational challenges, effect of process parameters, scale-up studies, application in multiple arenas and future prospects. After thorough review, it can be inferred that MDCs can be used as a stand-alone option or pre-treatment step for conventional desalination techniques without the application of external energy. MDCs have been used in multiple applications ranging from desalination, remediation of contaminated water, recovery of energy and nutrients from wastewater, softening of hardwater, biohydrogen production to degradation of waste engine oil. Although, MDCs have been used for multiple applications, still a number of operational challenges have been reported viz., interference of co-existing ions during desalination, membrane fouling, pH imbalance and limited potential of exoelectrogens. However, the re-circulation of anolytes with electrodialysis chamber has led to the maintenance of optimal pH for favourable microbial growth leading to improvement in the overall performance of MDCs. In future, genetic engineering may be used for improving the electrogenic activity of microbial community, next generation materials may be used as anode and cathode, varied sources of wastewater may be explored as anolytes, life cycle analysis and exergy analysis may be carried out to study the impact on environment and detailed pilot scale studies have to be carried out for assessing the feasibility of operation at large scale.
Collapse
Affiliation(s)
- Lohit Kumar Srinivas Gujjala
- Waste Re-processing Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- Waste Re-processing Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Pooja Sharma
- Waste Re-processing Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Debajyoti Kundu
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755 414, Viet Nam
| | - Sunil Kumar
- Waste Re-processing Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
4
|
Characteristics of Inorganic–Organic Hybrid Membranes Containing Carbon Nanotubes with Increased Iron-Encapsulated Content for CO2 Separation. MEMBRANES 2022; 12:membranes12020132. [PMID: 35207053 PMCID: PMC8875983 DOI: 10.3390/membranes12020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023]
Abstract
Novel inorganic–organic hybrid membranes Fe@MWCNT/PPO or Fe@MWCNT-OH/SPPO (with a new type of CNTs characterized by increased iron content 5.80 wt%) were synthesized for CO2 separation. The introduction of nanofillers into the polymer matrix has significantly improved the hybrid membrane’s gas transport (D, P, S, and αCO2/N2), magnetic, thermal, and mechanical parameters. It was found that magnetic casting has improved the alignment and dispersion of Fe@MWCNTs. At the same time, CNTs and polymer chemical modification enhanced interphase compatibility and the membrane’s CO2 separation efficiency. The thermo-oxidative stability and mechanical and magnetic parameters of composites were improved by increasing new CNTs loading. Cherazi’s model turned out to be suitable for describing the CO2 transport through analyzed hybrid membranes.
Collapse
|
5
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
6
|
Sayed ET, Shehata N, Abdelkareem MA, Atieh MA. Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141046. [PMID: 32827889 DOI: 10.1016/j.scitotenv.2020.141046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Bio-electrochemical systems (BESs) use electroactive micro-organisms for degrading organic materials in wastes for energy and/or chemical production. Microbial based desalination system is a cost-effective and environmentally friendly technique that can be used for water desalination with simultaneous wastewater treatment and energy harvesting. These systems can be used as a standalone technology for water desalination such as microbial desalination cell, microbial electrolysis desalination cell, or a hybrid with other desalination technology. This review summarized the recent progress in using BESs for water desalination, including microbial fuel cell-based desalination (MDC) and microbial electrolysis cell-based desalination (MEDC). The different scaling up trials to commercialize this technology, including the controlling parameters, are discussed. Moreover, the different hybrid desalination systems based on BES are summarized. Finally, the challenges facing the commercialization of the MDC systems were summarized.
Collapse
Affiliation(s)
- Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni‑Suef, Egypt
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Muataz Ali Atieh
- Department of Mechanical and Nuclear Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Wang Y, Xu A, Cui T, Zhang J, Yu H, Han W, Shen J, Li J, Sun X, Wang L. Construction and application of a 1-liter upflow-stacked microbial desalination cell. CHEMOSPHERE 2020; 248:126028. [PMID: 32018109 DOI: 10.1016/j.chemosphere.2020.126028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
As increasing demand of global reuse water, microbial desalination cell (MDC) is developed as a potential desalination approach to drive ion migration and separation through biodegradation without any additional energy. A novel, efficient, stable reactor coupled stacked MDC with upflow MDC was constructed, which was named as upflow-stacked MDC (USMDC). Compared with the traditional stacked MDC and upflow MDC, the desalination and generation performance of the USMDC was evaluated. Results showed that, after 24 h, the desalination ratio of USMDC can reach 91.9% when the external resistance was 1.5 Ω, which was 1.18 and 1.48 times higher than SMDC and UMDC, respectively. The long-term performance of the desalination efficiency was tested, which was maintained at 87.2-96.0% and stable for consecutive 120 days. Then, it was also the investigated that the relationship between desalination rate and external resistance during every period. The USMDC produced a maximum power density of 32.91 W m-3. In addition, the difference of current density between USMDC and SMDC indicates the turbulence generated by cylindrical structure could effectively decrease the internal resistance. It was also corroborated that salt concentration gradient and bipolar electrodialysis would decline the charge transfer efficiency. Accordingly, USMDC was verified having the superior desalination performance thus providing the possibility for application in wastewater reuse.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongxia Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
8
|
Son M, Kim T, Yang W, Gorski CA, Logan BE. Electro-Forward Osmosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8352-8361. [PMID: 31267728 DOI: 10.1021/acs.est.9b01481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of ion migration induced by an electrical field on water flux in a forward osmosis (FO) process was examined using a thin-film composite (TFC) membrane, held between two cation exchange membranes. An applied fixed current of 100 mA (1.7 mA cm-2) was sustained by the proton flux through the TFC-BW membrane using a feed of 34 mM NaCl, and a 257 mM NaCl draw solution. Protons generated at the anode were transported through the cation exchange membrane and into the draw solution, lowering the pH of the draw solution. Additional proton transport through the TFC-BW membrane also lowered the pH of the feed solution. The localized accumulation of the protons on the draw side of the TFC-BW membrane resulted in high concentration polarization modulus of 1.41 × 105, which enhanced the water flux into the draw solution (5.56 LMH at 100 mA), compared to the control (1.10 LMH with no current). These results using this electro-forward osmosis (EFO) process demonstrated that enhanced water flux into the draw solution could be achieved using ion accumulation induced by an electrical field. The EFO system could be used for FO applications where a limited use of draw solute is necessary.
Collapse
Affiliation(s)
- Moon Son
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Taeyoung Kim
- Department of Chemical and Biomolecular Engineering, and Institute for a Sustainable Environment , Clarkson University , Potsdam , New York 13699 , United States
| | - Wulin Yang
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
9
|
Kokkoli A, Zhang Y, Angelidaki I. Microbial electrochemical separation of CO 2 for biogas upgrading. BIORESOURCE TECHNOLOGY 2018; 247:380-386. [PMID: 28957770 DOI: 10.1016/j.biortech.2017.09.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane was obtained at 1.2V, inlet biogas rate of 0.088mL/h/mL reactor and NaCl concentration of 100mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas and treat wastewater which can be used as proof of concept for further investigation.
Collapse
Affiliation(s)
- Argyro Kokkoli
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
10
|
Jin X, Zhang Y, Li X, Zhao N, Angelidaki I. Microbial Electrolytic Capture, Separation and Regeneration of CO 2 for Biogas Upgrading. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9371-9378. [PMID: 28728410 DOI: 10.1021/acs.est.7b01574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biogas upgrading to natural gas quality is essential for the efficient use of biogas in various applications. Carbon dioxide (CO2) which constitutes a major part of the biogas is generally removed by physicochemical methods. However, most of the methods are expensive and often present environmental challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages. CO2 was effectively separated from the raw biogas and the CH4 content in the outlet reached as high as 97.0 ± 0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO2 was also achieved in the regeneration chamber with low pH (1.34 ± 0.04). The relatively low electric energy consumption (≤0.15 kWh/m3 biogas) along with the H2 production which can contribute to the energy input makes the overall energy need of the system low, and thereby makes the technology promising. This work provides the first attempt for development of a sustainable biogas upgrading technology and potentially expands the application of microbial electrochemical technologies.
Collapse
Affiliation(s)
- Xiangdan Jin
- Department of Environmental Engineering, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Xiaohu Li
- Department of Environmental Engineering, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Nannan Zhao
- Department of Environmental Engineering, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Colombo A, Marzorati S, Lucchini G, Cristiani P, Pant D, Schievano A. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. BIORESOURCE TECHNOLOGY 2017; 237:240-248. [PMID: 28341382 DOI: 10.1016/j.biortech.2017.03.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34gCODL-1). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm-2) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies.
Collapse
Affiliation(s)
- Alessandra Colombo
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Stefania Marzorati
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Giorgio Lucchini
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Pierangela Cristiani
- RSE - Ricerca sul Sistema Energetico S.p.A., via Rubattino 54, 20134 Milano, Italy
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Andrea Schievano
- Department of Agricultural and Environmental Science (DiSAA), Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
12
|
Okyay TO, Nguyen HN, Castro SL, Rodrigues DF. CO 2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:671-680. [PMID: 27524723 DOI: 10.1016/j.scitotenv.2016.06.199] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Urea is an abundant nitrogen-containing compound found in urine of mammals and widely used in fertilizers. This compound is part of the nitrogen biogeochemical cycle and is easily biodegraded by ureolytic microorganisms that have the urease enzyme. Previous studies, with ureolytic isolates, have shown that some ureolytic microorganisms are able to sequester CO2 through a process called microbially-induced calcium carbonate precipitation. The present study investigates 15 ureolytic consortia obtained from the "Pamukkale travertines" and the "Cave Without A Name" using different growth media to identify the possible bacterial genera responsible for CO2 sequestration through the microbially-induced calcite precipitation (MICP). The community structure and diversity were determined by deep-sequencing. The results showed that all consortia presented varying CO2 sequestration capabilities and MICP rates. The CO2 sequestration varied between 0 and 86.4%, and it depended largely on the community structure, as well as on pH. Consortia with predominance of Comamonas, Plesiomonas and Oxalobacter presented reduced CO2 sequestration. On the other hand, consortia dominated by Sporosarcina, Sphingobacterium, Stenotrophomonas, Acinetobacter, and Elizabethkingia showed higher rates of CO2 uptake in the serum bottle headspace.
Collapse
Affiliation(s)
- Tugba O Okyay
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Sarah L Castro
- NASA Johnson Space Center Microbiology Laboratory, Houston, TX 77058, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA.
| |
Collapse
|
13
|
Chen X, Liang P, Zhang X, Huang X. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery. BIORESOURCE TECHNOLOGY 2016; 215:274-284. [PMID: 26961714 DOI: 10.1016/j.biortech.2016.02.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water desalination, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial desalination cells in BESs to drive water desalination, and various configurations have optimized electricity generation and desalination performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization.
Collapse
Affiliation(s)
- Xi Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
14
|
Huang Z, Jiang D, Lu L, Ren ZJ. Ambient CO2 capture and storage in bioelectrochemically mediated wastewater treatment. BIORESOURCE TECHNOLOGY 2016; 215:380-385. [PMID: 27020397 DOI: 10.1016/j.biortech.2016.03.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
This study reports that wastewater can be used to capture and store CO2 directly from ambient air and produce energy. The proof-of-concept system consisted of an ion exchange resin column that captures and concentrates ambient CO2 using a moisture-driven cycle. The concentrated CO2 was then transferred into a microbial electrochemical carbon capture (MECC) reactor for carbon sequestration and hydrogen production. Data from an average batch cycle showed that approximately 8mmol/L CO2 was captured in the MECC cathode when 0.14g/LCOD was removed in the anode. With 90% hydrogen conversion efficiency, the energy intensity and CO2 absorption from the process could be 11.3kJ/gCOD and 0.49gCO2/gCOD respectively. If the proposed process is applied, over 68milliontons of atmospheric CO2 can be captured yearly during wastewater treatment in the US, which equates to significant economic values if CO2 taxes were to be implemented more widely.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Daqian Jiang
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, United States
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
15
|
Vanoppen M, Bakelants AFAM, Gaublomme D, Schoutteten KVKM, Vanden Bussche J, Vanhaecke L, Verliefde ARD. Properties governing the transport of trace organic contaminants through ion-exchange membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:489-497. [PMID: 25422872 DOI: 10.1021/es504389q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion exchange membranes could provide a solution to the selective separation of organic and inorganic components in industrial wastewater. The phenomena governing the transport of organics through the IEM however, are not yet fully understood. Therefore, the transport of trace organic contaminants (TOrCs) as a model for a wide variety of organic compounds was studied under different conditions. It was found that in the absence of salt and external potential, the chemical equilibrium is the main driver for TOrC-transport, resulting in the transport of mainly charged TOrCs. When salt is present, the transport of TOrCs is hampered in favor of the NaCl transport, which shows a preferential interaction with the membranes due to its small size, high mobility and concentration. It is hypothesized that electrostatic interactions and electron donor/acceptor interactions are the main drivers for TOrC transport and that transport is mainly diffusion driven. This was confirmed in the experiments with different current densities, where the external potential seemed to have only a minor influence on the transport of TOrCs. It is only when the salt becomes nearly completely depleted that the TOrCs are transported as charge carriers. This shows that it is very difficult to get preferential transport of organic compounds due to the diffusive nature of their transport.
Collapse
Affiliation(s)
- Marjolein Vanoppen
- Particle and Interfacial Technology Group, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University , Ghent 9000, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhu X, Hatzell MC, Logan B. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H 2 Production and CO 2 Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2014; 1:231-235. [PMID: 24741666 PMCID: PMC3982931 DOI: 10.1021/ez500073q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 05/31/2023]
Abstract
Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.
Collapse
Affiliation(s)
- Xiuping Zhu
- E-mail: . Telephone: (814) 863-3084. Fax: (814) 863-7304
| | | | | |
Collapse
|