1
|
Wang E, Ballachay R, Cai G, Cao Y, Trajano HL. Predicting xylose yield from prehydrolysis of hardwoods: A machine learning approach. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.994428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemicelluloses are amorphous polymers of sugar molecules that make up a major fraction of lignocellulosic biomasses. They have applications in the bioenergy, textile, mining, cosmetic, and pharmaceutical industries. Industrial use of hemicellulose often requires that the polymer be hydrolyzed into constituent oligomers and monomers. Traditional models of hemicellulose degradation are kinetic, and usually only appropriate for limited operating regimes and specific species. The study of hemicellulose hydrolysis has yielded substantial data in the literature, enabling a diverse data set to be collected for general and widely applicable machine learning models. In this paper, a dataset containing 1955 experimental data points on batch hemicellulose hydrolysis of hardwood was collected from 71 published papers dated from 1985 to 2019. Three machine learning models (ridge regression, support vector regression and artificial neural networks) are assessed on their ability to predict xylose yield and compared to a kinetic model. Although the performance of ridge regression was unsatisfactory, both support vector regression and artificial neural networks outperformed the simple kinetic model. The artificial neural network outperformed support vector regression, reducing the mean absolute error in predicting soluble xylose yield of test data to 6.18%. The results suggest that machine learning models trained on historical data may be used to supplement experimental data, reducing the number of experiments needed.
Collapse
|
2
|
Meng X, Yoo CG, Pu Y, Ragauskas AJ. Opportunities and challenges for flow-through hydrothermal pretreatment in advanced biorefineries. BIORESOURCE TECHNOLOGY 2022; 343:126061. [PMID: 34597806 DOI: 10.1016/j.biortech.2021.126061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal pretreatment (HTP) using only water offers great potential to reduce the overall cost of the bioconversion process. However, traditional HTP performed in a batch has limitations in removing lignin and often needs to be performed under severe conditions to achieve reasonable pretreatment effects. Lignin left in the pretreated residue at these conditions is also highly condensed, thus possessing an even more adverse impact on the hydrolysis process, which requires high enzyme loadings. To address these technical challenges, HTP performed in a flow-through configuration was developed to simultaneously achieve near-complete hemicellulose recovery, high lignin removal and high sugar release. Despite facing challenges such as potentially large water usage, flow-through HTP still represents one of the most cost-effective and eco-friendly pretreatment methods. This review mainly covers the latest cutting-edge innovations of flow-through HTP along with structural and compositional changes of cellulose, hemicellulose, and lignin before and after pretreatment.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
3
|
Huang K, Das L, Guo J, Xu Y. Catalytic valorization of hardwood for enhanced xylose-hydrolysate recovery and cellulose enzymatic efficiency via synergistic effect of Fe 3+ and acetic acid. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:248. [PMID: 31636707 PMCID: PMC6796388 DOI: 10.1186/s13068-019-1587-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/05/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Poplars are considered suitable dedicated energy crops, with abundant cellulose and hemicellulose, and huge surplus biomass potential in China. Xylan, the major hemicellulosic component, contributes to the structural stability of wood and represents a tremendous quantity of biobased chemicals for fuel production. Monomeric xylose conversion to value-added chemicals such as furfural, xylitol, and xylonic acid could greatly improve the economics of pulp-paper industry and biorefinery. Acetic acid (HAc) is used as a friendly and recyclable selective catalyst amenable to xylan degradation and xylooligosaccharides production from lignocellulosic materials. However, HAc catalyst usually works much feebly at inert woods than agricultural straws. In this study, effects of different iron species in HAc media on poplar xylan degradation were systematically compared, and a preferable Fe3+-assisted HAc hydrolysis process was proposed for comparable xylose-hydrolysate recovery (XHR) and enzymatic saccharification of cellulose. RESULTS In presence of 6.5% HAc with 0.17-0.25 wt% Fe3+, xylose yield ranged between 72.5 and 73.9%. Additionally, pretreatment was effective in poplar delignification, with a lignin yield falling between 38.6 and 42.5%. Under similar conditions, saccharification efficiency varied between 60.3 and 65.9%. Starting with 100 g poplar biomass, a total amount of 12.7-12.8 g of xylose and 18.8-22.8 g of glucose were harvested from liquid streams during the whole process of Fe3+-HAc hydrolysis coupled with enzymatic saccharification. Furthermore, the enhancement mechanism of Fe3+ coupled with HAc was investigated after proof-of-concept experiments. Beechwood xylan and xylose were treated under the same condition as poplar sawdust fractionation, giving understanding of the effect of catalysts on the hydrolysis pathway from wood xylan to xylose and furfural by Fe3+-HAc. CONCLUSIONS The Fe3+-assisted HAc hydrolysis process was demonstrated as an effective approach to the wood xylose and other monosaccharides production. Synergistic effect of Lewis acid site and aqueous acetic acid provided a promising strategy for catalytic valorization of poplar biomass.
Collapse
Affiliation(s)
- Kaixuan Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Lalitendu Das
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551 USA
| | - Jianming Guo
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
4
|
Jung S, Trajano HL, Yoo CG, Foston MB, Hu F, Tolbert AK, Wyman CE, Ragauskas AJ. Topochemical Understanding of Lignin Distribution During Hydrothermal Flowthrough Pretreatment. ChemistrySelect 2018. [DOI: 10.1002/slct.201801837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Seokwon Jung
- School of Chemistry and Biochemistry; Georgia Institute of Technology, Atlanta; GA 30332 USA
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
| | - Heather L. Trajano
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
- Department of Chemical & Environmental Engineering; Center for Environmental Research and Technology University of California, Riverside; CA 92521 USA
- Department of Chemical and Biological Engineering; University of British Columbia Vancouver, British Columbia, V6T 1Z3; Canada
| | - Chang Geun Yoo
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
- UT-ORNL Joint Institute for Biological Science; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
| | - Marcus B. Foston
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
- Department of Energy; Environmental & Chemical Engineering Washington University, Saint Louis; MO 63130 USA
| | - Fan Hu
- School of Chemistry and Biochemistry; Georgia Institute of Technology, Atlanta; GA 30332 USA
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
| | - Allison K. Tolbert
- School of Chemistry and Biochemistry; Georgia Institute of Technology, Atlanta; GA 30332 USA
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
| | - Charles E. Wyman
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
- Department of Chemical & Environmental Engineering; Center for Environmental Research and Technology University of California, Riverside; CA 92521 USA
| | - Arthur J. Ragauskas
- School of Chemistry and Biochemistry; Georgia Institute of Technology, Atlanta; GA 30332 USA
- BioEnergy Science Center & Center for Bioenergy Innovation; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
- UT-ORNL Joint Institute for Biological Science; Oak Ridge National Laboratory, Oak Ridge; TN 37831 USA
- Department of Chemical and Biomolecular Engineering & Department of Forestry, Wildlife; Fisheries University of Tennessee, Knoxville; TN 37996 USA
| |
Collapse
|
5
|
Pattathil S, Ingwers MW, Aubrey DP, Li Z, Dahlen J. A quantitative method for analyzing glycome profiles of plant cell walls. Carbohydr Res 2017; 448:128-135. [DOI: 10.1016/j.carres.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
6
|
Boucherba N, Gagaoua M, Bouanane-Darenfed A, Bouiche C, Bouacem K, Kerbous MY, Maafa Y, Benallaoua S. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. BIORESOUR BIOPROCESS 2017; 4:29. [PMID: 28736694 PMCID: PMC5498614 DOI: 10.1186/s40643-017-0161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022] Open
Abstract
The present study investigates the production and partial biochemical characterization of an extracellular thermostable xylanase from the Bacillus oceanisediminis strain SJ3 newly recovered from Algerian soil using three phase partitioning (TPP). The maximum xylanase activity recorded after 2 days of incubation at 37 °C was 20.24 U/ml in the presence of oat spelt xylan. The results indicated that the enzyme recovered in the middle phase of TPP system using the optimum parameters were determined as 50% ammonium sulfate saturation with 1.0:1.5 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 10 °C, respectively. The xylanase was recovered with 3.48 purification fold and 107% activity recovery. The enzyme was optimally active at pH 7.0 and was stable over a broad pH range of 5.0–10. The optimum temperature for xylanase activity was 55 °C and the half-life time at this temperature was of 6 h. At this time point the enzyme retained 50% of its activity after incubation for 2 h at 95 °C. The crude enzyme resist to sodium dodecyl sulfate and β-mercaptoethanol, while all the tested ions do not affect the activity of the enzyme. The recovered enzyme is, at least, stable in tested organic solvents except in propanol where a reduction of 46.5% was observed. Further, the stability of the xylanase was higher in hydrophobic solvents where a maximum stability was observed with cyclohexane. These properties make this enzyme to be highly thermostable and may be suggested as a potential candidate for application in some industrial processes. To the best of our knowledge, this is the first report of xylanase activity and recoverey using three phase partitioning from B. oceanisediminis.
Collapse
Affiliation(s)
- Nawel Boucherba
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Mohammed Gagaoua
- INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El-Bey, 25000 Constantine, Algeria.,UMR1213 Herbivores, INRA, VetAgro Sup, Clermont Université, Université de Lyon, 63122 Saint-Genès-Champanelle, France
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences, Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Cilia Bouiche
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences, Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Mohamed Yacine Kerbous
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Yacine Maafa
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Said Benallaoua
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
7
|
Paës G, Habrant A, Ossemond J, Chabbert B. Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:15. [PMID: 28101142 PMCID: PMC5237506 DOI: 10.1186/s13068-017-0704-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/06/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. RESULTS Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. CONCLUSIONS Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.
Collapse
Affiliation(s)
- Gabriel Paës
- FARE laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Anouck Habrant
- FARE laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Jordane Ossemond
- FARE laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Brigitte Chabbert
- FARE laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
8
|
Yoon J, Lee HW, Sim S, Myint AA, Park HJ, Lee YW. Hydrolysis kinetics of tulip tree xylan in hot compressed water. BIORESOURCE TECHNOLOGY 2016; 214:679-685. [PMID: 27208738 DOI: 10.1016/j.biortech.2016.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more.
Collapse
Affiliation(s)
- Junho Yoon
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | - Hun Wook Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | - Seungjae Sim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | - Aye Aye Myint
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | - Hee Jeong Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | - Youn-Woo Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea.
| |
Collapse
|
9
|
Foston M, Trajano HL, Samuel R, Wyman CE, He J, Ragauskas AJ. Recalcitrance and structural analysis by water-only flowthrough pretreatment of (13)C enriched corn stover stem. BIORESOURCE TECHNOLOGY 2015; 197:128-136. [PMID: 26320017 DOI: 10.1016/j.biortech.2015.08.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
This study presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. (13)C-enriched corn stover stems were pretreated at 170°C for 60min with a hot-water flow rate of 20mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function of time. Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.
Collapse
Affiliation(s)
- Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA; BioEnergy Science Center, Division Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Heather L Trajano
- Chemical and Biological Engineering, The University of British Columbia, 3620 East Mall, Vancouver V6T 1Z3, Canada; BioEnergy Science Center, Division Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Reichel Samuel
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Atlanta, GA, USA; BioEnergy Science Center, Division Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Charles E Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Avenue, Riverside, CA 92507, USA; BioEnergy Science Center, Division Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jian He
- Department of Energy, Environmental & Chemical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 5 323-B Dougherty Engineering Bldg., Knoxville, TN 3796, USA; Georgia Institute of Technology, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Atlanta, GA, USA; BioEnergy Science Center, Division Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|