1
|
High-performance nanofiltration membranes with a polyamide-polyester composite layer and a polydopamine surface layer for desalination and dye pollutant removal. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Zhuang X, Magnone E, Shin MC, Lee JI, Hwang JY, Choi YC, Park JH. Novel TiO 2/GO-Al 2O 3 Hollow Fiber Nanofiltration Membrane for Desalination and Lignin Recovery. MEMBRANES 2022; 12:membranes12100950. [PMID: 36295709 PMCID: PMC9608806 DOI: 10.3390/membranes12100950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 05/31/2023]
Abstract
Due to its greater physical-chemical stability, ceramic nanofiltration (NF) membranes were used in a number of industrial applications. In this study, a novel NF membrane was prepared by co-depositing a titanium dioxide (TiO2) and graphene oxide (GO) composite layer directly onto a porous α-Al2O3 hollow fiber (HF) support. An 8 µm-thick TiO2/GO layer was deposited to the surface of α-Al2O3 HF support by vacuum deposition method to produce advanced TiO2/GO-Al2O3 HF NF membrane. Scanning electron microscope (SEM) micrographs, energy dispersive spectrometer (EDS), X-ray powder diffraction (XRD), thermogravimetric analyzer (TGA), porosity, 3-point bending strength, zeta potential analysis, and hydrophilic properties by water contact angle are used for TiO2/GO-Al2O3 HF NF membrane characterization. The results show that the developed membrane's MWCO ranged from 600 to 800 Da. The water flux, rejection of lignin, and sodium ions were 5.6 L/m2 h·bar, ~92.1%, and ~5.5%, respectively. In a five-day NF process, the TiO2/GO-Al2O3 HF NF membrane exhibits good lignin permeation stability of about 14.5 L/m2 h.
Collapse
Affiliation(s)
- Xuelong Zhuang
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Korea
| | - Edoardo Magnone
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Korea
| | - Min Chang Shin
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Korea
| | - Jeong In Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Korea
| | - Jae Yeon Hwang
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Korea
| | - Young Chan Choi
- Fine Dust Research, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea
| | - Jung Hoon Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 30, Pildong-ro 1 gil, Jung-gu, Seoul 04620, Korea
| |
Collapse
|
3
|
Bai L, Ding J, Wang H, Ren N, Li G, Liang H. High-performance nanofiltration membranes with a sandwiched layer and a surface layer for desalination and environmental pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140766. [PMID: 32679500 DOI: 10.1016/j.scitotenv.2020.140766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
To overcome the permeability-selectivity limitation and improve the performance of desalination membranes, novel methods and design strategies are needed to prepare new types of thin film composite (TFC) nanofiltration (NF) membranes. In this work, a modified TFC membrane with a sandwiched layer and a surface layer was fabricated through a facile additional two-step approach. The microfiltration (MF) substrate and TFC surface were modified by a cellulose nanocrystal (CNC) sandwiched layer and a polydopamine (PDA) layer, respectively. Scanning electron microscopy (SEM) analysis indicated that the support modified by CNCs presented a more homogeneous surface than the control TFC. Cross-sectional SEM images showed that the underneath MF support, CNC interlayer, polyamide layer and PDA deposition layer were perfectly integrated. The surface charge was determined by an electrophoretic analyzer and revealed that the CNC interlayer increased the membrane electronegativity, while the PDA layer presented the opposite effect. Compared to the control TFC membrane, the solute permeability and rejection of the resultant CNC-TFC-PDA membrane were simultaneously increased, indicating a breakthrough in the trade-off limitation. The modified membranes exhibited a high removal rate for Congo red, Rose Bengal, sodium lignosulfonate and alkaline lignin, suggesting their excellent rejection performance for textile dyes and lignin derivatives. Fouling tests indicated that both the interlayer and surface layer exhibited positive effects on fouling alleviation. The effects of each functional layer were explored, and the main factors for performance improvement, including the modified hydrophilicity, surface charge, pore size and surface roughness, were discussed.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haorui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Virtanen T, Lahti J, Kalliola A, Tamminen T, Mänttäri M, Kallioinen M. Influence of laccase treatment on fouling layer formation in ultrafiltration of birch hot-water extract. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Yang S, Yang B, Duan C, Fuller DA, Wang X, Chowdhury SP, Stavik J, Zhang H, Ni Y. Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. BIORESOURCE TECHNOLOGY 2019; 281:440-448. [PMID: 30876797 DOI: 10.1016/j.biortech.2019.02.132] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Recently, the worldwide production of dissolving pulp has grown rapidly. Enzymatic technologies play an important role in producing high-quality dissolving pulp, due to their green, mild conditions, high specificity and efficiency. In this review, the relevant publications regarding enzyme applications for dissolving pulp are summarized. Cellulase and xylanase are two major enzymes used for this purpose. Cellulase can improve the quality of dissolving pulp, such as improving the reactivity/accessibility, controlling the intrinsic viscosity and adjusting the molecular weight. Xylanase is mainly used to increase the purity of the dissolving pulp and improve the pulp brightness. Furthermore, in order to increase the enzymatic treatment efficiency, the enzymatic technology can be combined with other techniques, including mechanical refining, fiber fractionations, alkali treatment and use of additives. The advantages, disadvantages and practical implications are analyzed. Also, the potential of other enzymes (such as laccase, mannanase) are discussed.
Collapse
Affiliation(s)
- Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, College of Paper Making Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bo Yang
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Darcy Alexandra Fuller
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Xinqi Wang
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Susmita Paul Chowdhury
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Jaroslav Stavik
- Schweighofer Fiber GmbH, Salzachtalstraße 88, Postfach 62, 5400 Hallein, Austria
| | - Hongjie Zhang
- Tianjin Key Laboratory of Pulp and Paper, College of Paper Making Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yonghao Ni
- Tianjin Key Laboratory of Pulp and Paper, College of Paper Making Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
6
|
Li Z, Qiu C, Gao J, Wang H, yingjuan F, Qin M. Improving lignin removal from pre-hydrolysis liquor by horseradish peroxidase-catalyzed polymerization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Improved microfiltration of prehydrolysis liquor of wood from dissolving pulp mill by flocculation treatments for hemicellulose recovery. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|