1
|
Christoff-Tempesta T, Epps TH. Ionic-Liquid-Mediated Deconstruction of Polymers for Advanced Recycling and Upcycling. ACS Macro Lett 2023; 12:1058-1070. [PMID: 37516988 PMCID: PMC10433533 DOI: 10.1021/acsmacrolett.3c00276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Ionic liquids (ILs) are a promising medium to assist in the advanced (chemical and biological) recycling of polymers, owing to their tunable catalytic activity, tailorable chemical functionality, low vapor pressures, and thermal stability. These unique physicochemical properties, combined with ILs' capacity to solubilize plastics waste and biopolymers, offer routes to deconstruct polymers at reduced temperatures (and lower energy inputs) versus conventional bulk and solvent-based methods, while also minimizing unwanted side reactions. In this Viewpoint, we discuss the use of ILs as catalysts and mediators in advanced recycling, with an emphasis on chemical recycling, by examining the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery. We also consider several potential environmental benefits and concerns associated with employing ILs for advanced recycling over bulk- or solvent-mediated deconstruction techniques, such as reduced chemical escape by volatilization, decreased energy demands, toxicity, and environmental persistence. By analyzing IL-mediated polymer deconstruction across a breadth of macromolecular systems, we identify recent innovations, current challenges, and future opportunities in IL application toward circular polymer economies.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Martín M, Taifouris M, Galán G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. BIORESOURCE TECHNOLOGY 2023:129397. [PMID: 37380036 DOI: 10.1016/j.biortech.2023.129397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Biomass can become the source for chemicals towards a sustainable production system. However, the challenges it presents such as the variety of species, their widespread and sparse availability, and the expensive transportation claims for an integrated approach to design the novel production system. Multiscale approaches have not been properly extended to biorefineryes design and deployment, due to the comprehensive experimental and modelling work they require. A systems perspective provides the systematic framework to analyze the availability and composition of raw materials across regions, how that affects process design, the portfolio of products that can be obtained by evaluating the strong link between the biomass features and the process design. The use of lignocellulosic materials requires for a multidisciplinary work, that must lead to new process engineers with technical competences in biology, biotechnology but also process engineering, mathematics, computer science and social sciences towards a sustainable process/chemical industry.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain.
| | - Manuel Taifouris
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| | - Guillermo Galán
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
3
|
Qiao J, Sheng Y, Wang M, Li A, Li X, Huang H. Evolving Robust and Interpretable Enzymes for the Bioethanol Industry. Angew Chem Int Ed Engl 2023; 62:e202300320. [PMID: 36701239 DOI: 10.1002/anie.202300320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
Obtaining a robust and applicable enzyme for bioethanol production is a dream for biorefinery engineers. Herein, we describe a general method to evolve an all-round and interpretable enzyme that can be directly employed in the bioethanol industry. By integrating the transferable protein evolution strategy InSiReP 2.0 (In Silico guided Recombination Process), enzymatic characterization for actual production, and computational molecular understanding, the model cellulase PvCel5A (endoglucanase II Cel5A from Penicillium verruculosum) was successfully evolved to overcome the remaining challenges of low ethanol and temperature tolerance, which primarily limited biomass transformation and bioethanol yield. Remarkably, application of the PvCel5A variants in both first- and second-generation bioethanol production processes (i. Conventional corn ethanol fermentation combined with the in situ pretreatment process; ii. cellulosic ethanol fermentation process) resulted in a 5.7-10.1 % increase in the ethanol yield, which was unlikely to be achieved by other optimization techniques.
Collapse
Affiliation(s)
- Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China.,School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Qiao J, Cui H, Wang M, Fu X, Wang X, Li X, Huang H. Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. BIORESOURCE TECHNOLOGY 2022; 360:127516. [PMID: 35764282 DOI: 10.1016/j.biortech.2022.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is an abundant and sustainable raw material, but its conversion into ethanol fuel has not yet achieved large-scale industrialization and economic benefits. Integrated biorefineries have been widely identified as the key to achieving this goal. Here, four promising routes were summarized to assemble the new industrial plants for cellulose-based fuels and chemicals, including 1) integration of cellulase production systems into current cellulosic ethanol processes; 2) combination of processes and facilities between cellulosic ethanol and first-generation ethanol; 3) application of enzyme-free saccharification processes and computational approaches to increase the bioethanol yield and optimize the integration process; 4) production of multiple products to maximize the value derived from the lignocellulosic biomass. Finally, the remaining challenges and perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xianshen Fu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
The use of GVL for holistic valorization of biomass. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Ahn Y, Kim J. Economic design framework of microalga-based biodiesel supply chains under uncertainties in CO2 emission and diesel demand. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Production of Bio-Based Chemicals, Acetic Acid and Furfural, through Low-Acid Hydrothermal Fractionation of Pine Wood (Pinus densiflora) and Combustion Characteristics of the Residual Solid Fuel. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low-acid hydrothermal (LAH) fractionation conditions were optimized for the effective degradation of hemicellulose from pine wood (Pinus densiflora). The hemicellulosic sugar yield was maximized at 82.5% when the pine wood was fractionated at 190 °C, with 0.5 wt.% of sulfuric acid, and for 10 min. Consecutively, acidified heat treatment with zinc chloride and solvent extraction with ethyl acetate were carried out for the recovery of bio-based platform chemicals, such as furfural and acetic acid, from liquid hydrolysate through liquid–liquid extraction (LLE). Overall, 61.5% of xylose was decomposed into furfural, and the yield of acetic acid was 62.3% and furfural 66.1%. After LAH fractionation, 64.8% of the solid remained and was pelletized. The pellets showed excellent fuel characteristics, i.e., significant ash rejection (74.5%) and high calorific values (4770 kcal/kg), and the precursors of NOx and SOx also decreased by up to 60.0% and 71.4%, respectively.
Collapse
|
8
|
Byun J, Han J. Environmental analysis of bioethanol production strategies from corn stover via enzymatic and nonenzymatic sugar production. BIORESOURCE TECHNOLOGY 2021; 328:124808. [PMID: 33609887 DOI: 10.1016/j.biortech.2021.124808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Two different technological process configurations for producing bioethanol from corn stover, namely, enzymatic hydrolysis for sugar production followed by fermentation (P1) and nonenzymatic chemical hydrolysis and subsequent fermentation (P2), were analyzed by a rigorous life cycle assessment. Three environmental impact categories (climate change (CC), fossil depletion (FD), and air pollutant (AP)) were estimated for the both process configurations on a system level. The "best-practice" case with a real scenario of the United States of America indicates that P2 is the most promising strategy from the perspectives of CC, FD, and AP. Considerable savings were achieved by P2: 1.34 kg CO2-eq/gallon of gasoline equivalent (GGE) for CC, 0.12 MJ/GGE for FD, and 0.24-0.94 g particle matters/GGE for AP. The robustness of the environmental impact results was validated by a scenario uncertainty analysis, and its results indicated that the corn stover composition is crucial.
Collapse
Affiliation(s)
- Jaewon Byun
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
9
|
Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 2020; 4:311-330. [PMID: 37127959 DOI: 10.1038/s41570-020-0187-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/26/2022]
Abstract
A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals.
Collapse
|
10
|
Replacing Fossil Fuels and Nuclear Power with Renewable Energy: Utopia or Valid Option? A Swiss Case Study of Bioenergy. ENERGIES 2020. [DOI: 10.3390/en13082051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transition towards a reliable, sustainable, low-carbon energy system is a major challenge of the 21st century. Due to the lower energy density of many renewable energy sources, a future system is expected to be more decentralized, leading to significant changes at the regional scale. This study analyzes the feasibility of the energy transition in the Swiss canton of Aargau as an illustrative example and explores different strategies to satisfy the local demand for electricity, heat, and fuel by 2035. In particular, we assess the potential contribution of biomass. Four scenarios demonstrate what energy demand proportion could be covered by bioenergy if different priorities were given to the provision of heat, electricity, and fuel. The impact of improved conversion technologies is also considered. The results show that the sustainably available renewable energy sources in canton Aargau will probably not be sufficient to cover its forecasted energy demand in 2035, neither with present nor future biomass conversion technologies. At best, 74% of the energy demand could be met by renewables. Biomass can increase the degree of autarky by a maximum of 13%. Depending on the scenario, at least 26–43% (2500–5700 GWh) of total energy demand is lacking, particularly for mobility purposes.
Collapse
|
11
|
Abstract
George Huber, Alexei Lapkin and Yan Ning introduce the Reaction Chemistry & Engineering themed issue on green chemistry and reaction engineering.
Collapse
Affiliation(s)
- George W. Huber
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| | - Alexei Lapkin
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| | - Ning Yan
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| |
Collapse
|
12
|
Ghosh A, Haverly MR, Lindstrom JK, Johnston PA, Brown RC. Tetrahydrofuran-based two-step solvent liquefaction process for production of lignocellulosic sugars. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
THF-based solvent liquefaction demonstrates a new economic and sustainable approach for fractionating, saccharifying biomass with simple and efficient solvent recovery.
Collapse
Affiliation(s)
- Arpa Ghosh
- Bioeconomy Institute
- Iowa State University
- Ames
- USA
| | | | | | | | - Robert C. Brown
- Bioeconomy Institute
- Iowa State University
- Ames
- USA
- Department of Mechanical Engineering
| |
Collapse
|
13
|
Techno-economic evaluation of heat integrated second generation bioethanol and furfural coproduction. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Gómez Millán G, Hellsten S, Llorca J, Luque R, Sixta H, Balu AM. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem 2019. [DOI: 10.1002/cctc.201801843] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gerardo Gómez Millán
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
- Department of Chemical Engineering, Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Eduard Maristany 10–14 08019 Barcelona Spain
| | - Sanna Hellsten
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
| | - Jordi Llorca
- Department of Chemical Engineering, Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Eduard Maristany 10–14 08019 Barcelona Spain
| | - Rafael Luque
- Departamento de Química OrgánicaUniversidad de Cordoba Campus Rabanales Edificio Marie Curie (C-3), Ctra Nnal IV−A, km 396 Cordoba Spain
- Peoples Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya str. 117198 Moscow Russia
| | - Herbert Sixta
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
| | - Alina M. Balu
- Departamento de Química OrgánicaUniversidad de Cordoba Campus Rabanales Edificio Marie Curie (C-3), Ctra Nnal IV−A, km 396 Cordoba Spain
| |
Collapse
|
15
|
A Total Site Synthesis approach for the selection, integration and planning of multiple-feedstock biorefineries. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Sun W, Trevorah R, Othman MZ. Fractionation of spent liquor from organosolv-pretreatment using lignin-incompatible extraction. BIORESOURCE TECHNOLOGY 2018; 269:255-261. [PMID: 30189378 DOI: 10.1016/j.biortech.2018.08.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 05/24/2023]
|
17
|
Jin L, Yu X, Peng C, Guo Y, Zhang L, Xu Q, Zhao ZK, Liu Y, Xie H. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification. BIORESOURCE TECHNOLOGY 2018; 270:537-544. [PMID: 30248653 DOI: 10.1016/j.biortech.2018.09.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The dissolution of corn stover was investigated in gamma-valerolactone (GVL) assisted by ionic liquids. An enhanced subsequent enzymatic saccharification was reached with a total reducing sugar yield of 0.69 g.g-1 and a glucose of 0.38 g.g-1 within 24 h. The treatment effects on the physical-chemical features of corn stover in terms of the natural recalcitrance to the subsequent biological digest were systematically investigated using composition analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The structures of the associated enzymatic hydrolysis lignin (EHL) and ionic liquid extracted lignin (IEL) were characterized by gel permeation chromatography (GPC), fourier transform infra-red spectroscopy (FTIR), phosphorous nuclear magnet resonance spectrometry (31P NMR), and heteronuclear single quantum coherence spectroscopy (HSQC) for an in-depth understanding of the delignification process and the basic structural information for further lignin valorization.
Collapse
Affiliation(s)
- Longming Jin
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang, China
| | - Xue Yu
- Bioenergy Division, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457# Zhongshan Road, Dalian, China
| | - Chang Peng
- Bioenergy Division, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457# Zhongshan Road, Dalian, China
| | - Yuanlong Guo
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang, China
| | - Lihua Zhang
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang, China
| | - Qinqin Xu
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang, China
| | - Zongbao Kent Zhao
- Bioenergy Division, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457# Zhongshan Road, Dalian, China.
| | - Yu Liu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China, Qilu University of Technology, Jinan 250353, China
| | - Haibo Xie
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University, West Campus, Huaxi District, Guiyang, China.
| |
Collapse
|
18
|
Questell-Santiago YM, Zambrano-Varela R, Talebi Amiri M, Luterbacher JS. Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization. Nat Chem 2018; 10:1222-1228. [PMID: 30224685 DOI: 10.1038/s41557-018-0134-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/02/2018] [Indexed: 11/10/2022]
Abstract
Polysaccharide depolymerization is an essential step for valorizing lignocellulosic biomass. In inexpensive systems such as pure water or dilute acid mixtures, carbohydrate monomer degradation rates exceed hemicellulose-and especially cellulose-depolymerization rates at most easily accessible temperatures, limiting sugar yields. Here, we use a reversible stabilization of xylose and glucose by acetal formation with formaldehyde to alter this kinetic paradigm, preventing sugar dehydration to furans and their subsequent degradation. During a harsh organosolv pretreatment in the presence of formaldehyde, over 90% of xylan in beech wood was recovered as diformylxylose (compared to 16% xylose recovery without formaldehyde). The subsequent depolymerization of cellulose led to carbohydrate yields over 70% and a final concentration of ~5 wt%, whereas the same conditions without formaldehyde gave a yield of 28%. This stabilization strategy pushes back the longstanding kinetic limits of polysaccharide depolymerization and enables the recovery of biomass-derived carbohydrates in high yields and concentrations.
Collapse
Affiliation(s)
- Ydna M Questell-Santiago
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Raquel Zambrano-Varela
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Masoud Talebi Amiri
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
19
|
Ghosh A, Bai X, Brown RC. Solubilized Carbohydrate Production by Acid-Catalyzed Depolymerization of Cellulose in Polar Aprotic Solvents. ChemistrySelect 2018. [DOI: 10.1002/slct.201800764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arpa Ghosh
- Department of Chemical and Biological Engineering; Iowa State University, Ames; Iowa USA 50011
- Bioeconomy Institute; Iowa State University, Ames; Iowa USA 50011
| | - Xianglan Bai
- Department of Mechanical Engineering; Iowa State University, Ames; Iowa USA 50011
| | - Robert C. Brown
- Department of Mechanical Engineering; Iowa State University, Ames; Iowa USA 50011
- Bioeconomy Institute; Iowa State University, Ames; Iowa USA 50011
| |
Collapse
|
20
|
Trevorah RM, Huynh T, Vancov T, Othman MZ. Bioethanol potential of Eucalyptus obliqua sawdust using gamma-valerolactone fractionation. BIORESOURCE TECHNOLOGY 2018; 250:673-682. [PMID: 29220812 DOI: 10.1016/j.biortech.2017.11.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Optimisation of conditions for gamma-valerolactone (GVL) pretreatment of Australian eucalyptus sawdust for high cellulose biomass and bioethanol production was demonstrated. Pretreatment parameters investigated included GVL concentrations of 35-50% w/w, temperatures of 120-180 °C and reaction durations of 0.5-2.0 h. Optimum conditions were determined using the response surface method (RSM) and central composite face-centred design. Cellulose content increased from 39.9% to a maximum of 89.3% w/w using treatments with 50% GVL at 156 °C for 0.5 h. Temperature had the most significant effect (RSM p < .05) on cellulose content of residual biomass and reducing operational duration of < 0.5 h may be viable according to RSM. PSSF fermentations of optimised pretreated eucalyptus sawdust produced up to 94% theoretical ethanol yield, which corresponded to approximately 181 kg of ethanol per dry ton of eucalyptus sawdust. The compositions of both the residual biomass and pretreatment liquors show that GVL pretreatment is a promising solvent for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Raymond M Trevorah
- School of Engineering, RMIT University, Swanston Street 3000, Melbourne, Australia.
| | - Tien Huynh
- School of Science, RMIT University, Bundoora 3083, Australia
| | - Tony Vancov
- NSW Department of Primary Industry, Wollongbar 2477, Australia
| | - Maazuza Z Othman
- School of Engineering, RMIT University, Swanston Street 3000, Melbourne, Australia
| |
Collapse
|
21
|
Hosseini SH, Hosseini SA, Zohreh N, Yaghoubi M, Pourjavadi A. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:789-798. [PMID: 29323888 DOI: 10.1021/acs.jafc.7b03922] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A magnetic nanocomposite was prepared by entrapment of Fe3O4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.
Collapse
Affiliation(s)
- Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran , Behshahr, Iran
| | - Seyedeh Ameneh Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran , Behshahr, Iran
| | - Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom , Qom, Iran
| | - Mahshid Yaghoubi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology , Tehran, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology , Tehran, Iran
| |
Collapse
|
22
|
Abstract
Rapid depletion of fossil fuels worldwide presents a dire situation demanding a potential replacement to surmount the current energy crisis. Lignocellulose presents a logical candidate to be exploited at industrial scale owing to its vast availability, inexpensive and renewable nature. Microbial degradation of lignocellulosic biomass is a lucrative, sustainable, and promising approach to obtain valuable commercial commodities at gigantic scale. The enzymatic hydrolysis involving cellulases is fundamental to all the technologies needed to transform lignocellulosic biomass to valuable industry relevant products. Cellulases have enormous potential to utilize cellulosic biomass, thus reducing environmental stress in addition to production of commodity chemicals resolving the current challenge to meet the energy needs globally. The substitution of petroleum-based fuels with bio-based fuels is the subject of thorough research establishing biofuel production as the future technology to achieve a sustainable, eco-friendly society with a zero waste approach.
Collapse
Affiliation(s)
| | - Amita Sharma
- Shaheed Udham Singh College of Research and Technology, Mohali, India
| | - Raman Soni
- Department of Biotechnology, D.A.V. College, Chandigarh, India
| |
Collapse
|
23
|
Ahn YC, Han J. Catalytic production of 1,4-pentanediol from corn stover. BIORESOURCE TECHNOLOGY 2017; 245:442-448. [PMID: 28898842 DOI: 10.1016/j.biortech.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
A novel strategy of large-scale 1,4-pentanediol (1,4-PDO) production derived from corn stover is presented based on catalytic conversion experiments. In this strategy, cellulose and hemicellulose of corn stover are catalytically converted to GVL by using corn stover derived GVL asa reaction solvent, and GVL asa reaction intermediate is then upgraded to 1,4-PDO. In the strategy, three possible designs consisting of conversion and separation subsystems are developed in terms of biomass residues as electricity or fuel sources (A: electricity source, B: electricity and fuel sources, and C: fuel source). The economic feasibility of the process designs was demonstrated taking into account the minimum selling price (MSP; US$/kg) of 1,4-PDO with a comparison with the petro-based process. Design C was the best MSP (US$ 1.25/kg) of those assessed because of its higher energy efficiency (69-82%) while meeting lower total annualized costs (4.7-6.5%) than Designs A and B.
Collapse
Affiliation(s)
- Yu-Chan Ahn
- School of Semiconductor and Chemical Engineering, Chonbuk National University, Republic of Korea
| | - Jeehoon Han
- School of Semiconductor and Chemical Engineering, Chonbuk National University, Republic of Korea; School of Chemical Engineering, Chonbuk National University, Republic of Korea.
| |
Collapse
|
24
|
Process design and techno-economic evaluation for catalytic production of cellulosic γ-Valerolactone using lignin derived propyl guaiacol. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Han J. Integrated process for simultaneous production of jet fuel range alkenes and N -methylformanilide using biomass-derived gamma-valerolactone. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Won W, Motagamwala AH, Dumesic JA, Maravelias CT. A co-solvent hydrolysis strategy for the production of biofuels: process synthesis and technoeconomic analysis. REACT CHEM ENG 2017. [DOI: 10.1039/c6re00227g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop an integrated strategy for the production of ethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Wangyun Won
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
- DOE Great Lakes Bioenergy Research Center
| | - Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
- DOE Great Lakes Bioenergy Research Center
| | - James A. Dumesic
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
- DOE Great Lakes Bioenergy Research Center
| | - Christos T. Maravelias
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
- DOE Great Lakes Bioenergy Research Center
| |
Collapse
|
27
|
Liu ZH, Chen HZ. Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production. BIORESOURCE TECHNOLOGY 2017; 223:47-58. [PMID: 27788429 DOI: 10.1016/j.biortech.2016.10.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The simultaneous saccharification and fermentation (SSF) of corn stover biomass for ethanol production was performed by integrating steam explosion (SE) pretreatment, hydrolysis and fermentation. Higher SE pretreatment severity and two-step size reduction increased the specific surface area, swollen volume and water holding capacity of steam exploded corn stover (SECS) and hence facilitated the efficiency of hydrolysis and fermentation. The ethanol production and yield in SSF increased with the decrease of particle size and post-washing of SECS prior to fermentation to remove the inhibitors. Under the SE conditions of 1.5MPa and 9min using 2.0cm particle size, glucan recovery and conversion to glucose by enzymes were 86.2% and 87.2%, respectively. The ethanol concentration and yield were 45.0g/L and 85.6%, respectively. With this two-step size reduction and post-washing strategy, the water utilization efficiency, sugar recovery and conversion, and ethanol concentration and yield by the SSF process were improved.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
28
|
|
29
|
Kong L, Sen SM, Henao CA, Dumesic JA, Maravelias CT. A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew Chem Int Ed Engl 2016; 55:8164-215. [PMID: 27311348 PMCID: PMC6680216 DOI: 10.1002/anie.201510351] [Citation(s) in RCA: 815] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/28/2016] [Indexed: 12/23/2022]
Abstract
Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
Collapse
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Matthew T Clough
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, and Department of Biochemistry, University of Wisconsin, Madison, WI, 53726, USA.
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Byun J, Han J. Catalytic production of biofuels (butene oligomers) and biochemicals (tetrahydrofurfuryl alcohol) from corn stover. BIORESOURCE TECHNOLOGY 2016; 211:360-366. [PMID: 27030955 DOI: 10.1016/j.biortech.2016.03.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
A strategy is presented that produces liquid hydrocarbon fuels (butene oligomers (BO)) from cellulose (C6) fraction and commodity chemicals (tetrahydrofurfuryl alcohol (THFA)) from hemicellulose (C5) of corn stover based on catalytic conversion technologies using 2-sec-butylphenol (SBP) solvents. This strategy integrates the conversion subsystems based on experimental studies and separation subsystems for recovery of biomass derivatives and SBP solvents. Moreover, a heat exchanger network is designed to reduce total heating requirements to the lowest level, which is satisfied from combustion of biomass residues (lignin and humins). Based on the strategy, this work offers two possible process designs (design A: generating electricity internally vs. design B: purchasing electricity externally), and performs an economic feasibility study for both the designs based on a comparison of the minimum selling price (MSP) of THFA. This strategy with the design B leads to a better MSP of $1.93 per kg THFA.
Collapse
Affiliation(s)
- Jaewon Byun
- School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, South Korea
| | - Jeehoon Han
- School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
32
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510351] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ Großbritannien
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Matthew T. Clough
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, and Department of Biochemistry University of Wisconsin Madison WI 53726 USA
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
33
|
Gubicza K, Nieves IU, Sagues WJ, Barta Z, Shanmugam KT, Ingram LO. Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process. BIORESOURCE TECHNOLOGY 2016; 208:42-48. [PMID: 26918837 DOI: 10.1016/j.biortech.2016.01.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72 US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield.
Collapse
Affiliation(s)
- Krisztina Gubicza
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Muegyetem rkp. 3, Hungary
| | - Ismael U Nieves
- Stan Mayfield Biorefinery, University of Florida, Perry, FL 32348, United States
| | - William J Sagues
- Stan Mayfield Biorefinery, University of Florida, Perry, FL 32348, United States
| | - Zsolt Barta
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Muegyetem rkp. 3, Hungary
| | - K T Shanmugam
- Stan Mayfield Biorefinery, University of Florida, Perry, FL 32348, United States; Microbiology & Cell Science, University of Florida, Gainesville, FL 32611-0700, United States
| | - Lonnie O Ingram
- Stan Mayfield Biorefinery, University of Florida, Perry, FL 32348, United States; Microbiology & Cell Science, University of Florida, Gainesville, FL 32611-0700, United States.
| |
Collapse
|
34
|
Kim S, Han J. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents. BIORESOURCE TECHNOLOGY 2016; 204:1-8. [PMID: 26765845 DOI: 10.1016/j.biortech.2015.12.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
A strategy in which the hemicellulose and cellulose fractions of lignocellulosic biomass are converted separately to jet fuel-range liquid hydrocarbon fuels (butene oligomers) through catalytic processes is developed. Dilute sulfuric acid (SA)-catalyzed pretreatment fractionates the first biomass into cellulose and hemicellulose-derived xylose, and these are then converted separately to levulinic acid (LA) using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents, respectively. LA is upgraded catalytically to butene oligomers via γ-valerolactone (GVL) and butene intermediates. Separation subsystems are designed to recover the alkylphenol solvents and biomass-derived intermediates (LA and GVL) for combination with the catalytic conversion subsystems of hemicellulose, cellulose, and lignin. In addition, a heat exchanger network (HEN) design is presented to satisfy the energy requirements of the integrated process from combustion of biomass residues (degradation products). Finally, a technoeconomic analysis shows that the proposed process ($3.37/gallon of gasoline) is an economically competitive alternative to current biofuel production approaches.
Collapse
Affiliation(s)
- Sunghoon Kim
- School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, South Korea
| | - Jeehoon Han
- School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
35
|
Floudas CA, Niziolek AM, Onel O, Matthews LR. Multi‐scale systems engineering for energy and the environment: Challenges and opportunities. AIChE J 2016. [DOI: 10.1002/aic.15151] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christodoulos A. Floudas
- Artie McFerrin Dept. of Chemical EngineeringTexas A&M UniversityCollege Station TX77843 USA
- Texas A&M Energy Institute, 302D Williams Administration Building, 3372 Texas A&M UniversityCollege Station TX77843USA
| | - Alexander M. Niziolek
- Dept. of Chemical and Biological EngineeringPrinceton UniversityPrinceton NJ08544 USA
- Artie McFerrin Dept. of Chemical EngineeringTexas A&M UniversityCollege Station TX77843 USA
- Texas A&M Energy Institute, 302D Williams Administration Building, 3372 Texas A&M UniversityCollege Station TX77843USA
| | - Onur Onel
- Dept. of Chemical and Biological EngineeringPrinceton UniversityPrinceton NJ08544 USA
- Artie McFerrin Dept. of Chemical EngineeringTexas A&M UniversityCollege Station TX77843 USA
- Texas A&M Energy Institute, 302D Williams Administration Building, 3372 Texas A&M UniversityCollege Station TX77843USA
| | - Logan R. Matthews
- Dept. of Chemical and Biological EngineeringPrinceton UniversityPrinceton NJ08544 USA
- Artie McFerrin Dept. of Chemical EngineeringTexas A&M UniversityCollege Station TX77843 USA
- Texas A&M Energy Institute, 302D Williams Administration Building, 3372 Texas A&M UniversityCollege Station TX77843USA
| |
Collapse
|
36
|
Shuai L, Luterbacher J. Organic Solvent Effects in Biomass Conversion Reactions. CHEMSUSCHEM 2016; 9:133-155. [PMID: 26676907 DOI: 10.1002/cssc.201501148] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes.
Collapse
Affiliation(s)
- Li Shuai
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), Station 6, CH.H2.545, 1015, Lausanne, Switzerland
| | - Jeremy Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), Station 6, CH.H2.545, 1015, Lausanne, Switzerland.
| |
Collapse
|
37
|
Ng RTL, Maravelias CT. Design of Cellulosic Ethanol Supply Chains with Regional Depots. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03677] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rex T. L. Ng
- Department
of Chemical and Biological Engineering and ‡DOE Great Lakes Bioenergy Research
Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Christos T. Maravelias
- Department
of Chemical and Biological Engineering and ‡DOE Great Lakes Bioenergy Research
Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Han J, Murat Sen S, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT. Process systems engineering studies for the synthesis of catalytic biomass-to-fuels strategies. Comput Chem Eng 2015. [DOI: 10.1016/j.compchemeng.2015.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Metzker G, Burtoloso ACB. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Chem Commun (Camb) 2015; 51:14199-202. [DOI: 10.1039/c5cc02993g] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct conversion of LA, from crude liquors after biomass acid hydrolysis, into GVL is achieved using Fe catalysts.
Collapse
Affiliation(s)
- Gustavo Metzker
- Chemistry Institute at São Carlos
- University of São Paulo
- São Carlos
- Brazil
| | - Antonio C. B. Burtoloso
- Chemistry Institute at São Carlos
- University of São Paulo
- São Carlos
- Brazil
- Brazilian Bioethanol Science and Technology Laboratory (CTBE) – CNPEM
| |
Collapse
|