1
|
Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Cultures from Pachnoda marginata Larva Gut. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to partially mimic the efficient lignocellulose pretreatment process performed naturally in the gut system of Pachnoda marginata larvae, two wheat straw pretreatments were evaluated: a mechanical pretreatment via cutting the straw into two different sizes and an alkaline pretreatment with calcium hydroxide. After pretreatment, gut enrichment cultures on wheat straw at alkaline pH were inoculated and kept at mesophilic conditions over 45 days. The methanogenic community was composed mainly of the Methanomicrobiaceae and Methanosarcinaceae families. The combined pretreatment, size reduction and alkaline pretreatment, was the best condition for methane production. The positive effect of the straw pretreatment was higher in the midgut cultures, increasing the methane production by 192%, while for hindgut cultures the methane production increased only by 149% when compared to non-pretreated straw. Scanning electron microscopy (SEM) showed that the alkaline pretreatment modified the surface of the wheat straw fibers, which promoted biofilm formation and microbial growth. The enrichment cultures derived from larva gut microbiome were able to degrade larger 1 mm alkaline treated and smaller 250 µm but non-pretreated straw at the same efficiency. The combination of mechanical and alkaline pretreatments resulted in increased, yet not superimposed, methane yield.
Collapse
|
2
|
Donkor KO, Gottumukkala LD, Lin R, Murphy JD. A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. BIORESOURCE TECHNOLOGY 2022; 351:126950. [PMID: 35257881 DOI: 10.1016/j.biortech.2022.126950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is a bioprocess technology that integrates into circular economy systems, which produce renewable energy and biofertilizer whilst reducing greenhouse gas emissions. However, improvements in biogas production efficiency are needed in dealing with lignocellulosic biomass. The state-of-the-art of AD technology is discussed, with emphasis on feedstock digestibility and operational difficulty. Solutions to these challenges including for pre-treatment and bioaugmentation are reviewed. This article proposes an innovative integrated system combining alkali pre-treatment, temperature-phased AD and bioaugmentation techniques. The integrated system as modelled has a targeted potential to achieve a biodegradability index of 90% while increasing methane production by 47% compared to conventional AD. The methane productivity may also be improved by a target reduction in retention time from 30 to 20 days. This, if realized has the potential to lower energy production cost and the levelized cost of abatement to facilitate an increased resource of sustainable commercially viable biomethane.
Collapse
Affiliation(s)
- Kwame O Donkor
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Celignis Limited, Mill Court, Upper William Street, Limerick V94 N6D2, Ireland
| | | | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Zheng Y, Zhang Q, Zhang Z, Jing Y, Hu J, He C, Lu C. A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. BIORESOURCE TECHNOLOGY 2022; 347:126595. [PMID: 34953992 DOI: 10.1016/j.biortech.2021.126595] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen has become a research highlight by virtue of its clean energy production technology and high energy content. The technology of biohydrogen production from biological waste via fermentation has lower costs, provides environment-friendly methods regarding energy balance, and creates a pathway for sustainable utilization of massive agricultural waste. However, biohydrogen production is generally limited by lower productivity. Many studies have been conducted aimed at improving biohydrogen production efficiency. Hence, this review is intended to describe improving routes for biohydrogen production from agricultural waste and highlights recent advances in these approaches. In addition, the critical factors affecting biohydrogen production, including the pretreatment method, substrate resource, fermentation conditions, and bioreactor design, were also comprehensively discussed along with challenges and future prospects.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China.
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| |
Collapse
|
4
|
Li M, Jiang B, Wu W, Wu S, Yang Y, Song J, Ahmad M, Jin Y. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. Int J Biol Macromol 2022; 195:274-286. [PMID: 34883164 DOI: 10.1016/j.ijbiomac.2021.11.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
From energy perspective, with abundant polysaccharides (45-85%), the renewable lignocellulosic is recognized as the 2nd generation feedstock for bioethanol and bio-based products production. Enzymatic hydrolysis is a critical pathway to yield fermentable monosaccharides from pretreated substrates of lignocellulose. Nevertheless, the lignin presence in lignocellulosic substrates leads to the low substrate enzymatic digestibility ascribed to the nonproductive adsorption. It has been reported that the water-soluble lignin (low molecular weight, sulfonated/sulfomethylated and graft polymer) enhance the rate of enzymatic digestibility, however, the catalytic mechanism of lignin-enzyme interaction remains elusive. In this review, optimization strategies for enzymatic hydrolysis based on the lignin structural modification, enzyme engineering, and different additives are critically reviewed. Lignin-enzyme interaction mechanism is also discussed (lignin and various cellulases). In addition, the mathematical models and simulation of lignin, cellulose and enzyme aims for promoting an integrated biomass-conversion process for sustainable production of value-added biofuels.
Collapse
Affiliation(s)
- Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Vo DVN. Recent advances and sustainable development of biofuels production from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126203. [PMID: 34710606 DOI: 10.1016/j.biortech.2021.126203] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Many countries in the world are facing the demand for non-renewable fossil fuels because of overpopulation and economic boom. To reduce environmental pollution and zero carbon emission, the conversion of biomass into biofuels has paid better attention and is considered to be an innovative approach. A diverse raw material has been utilized as feedstock for the production of biofuel, depending on the availability of biomass, cost-effectiveness, and their geographic location. Among the different raw materials, lignocellulosic biomass has fascinated many researchers around the world. The current review discovers the potential application of lignocellulosic biomass for the production of biofuels. Various pretreatment methods have been widely used to increase the hydrolysis rate and accessibility of biomass. This review highlights recent advances in pretreatment methodologies for the enhanced production of biofuels. Detailed descriptions of the mechanism of biomass processing pathway, optimization, and modeling study have been discussed.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste? Molecules 2021; 26:molecules26144175. [PMID: 34299449 PMCID: PMC8303515 DOI: 10.3390/molecules26144175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Pretreatment and codigestion are proven to be effective strategies for the enhancement of the anaerobic digestion of lignocellulosic residues. The purpose of this study is to evaluate the effects of pretreatment and codigestion on methane production and the hydrolysis rate in the anaerobic digestion of agricultural wastes (AWs). Thermal and different thermochemical pretreatments were applied on AWs. Sewage sludge (SS) was selected as a cosubstrate. Biochemical methane potential tests were performed by mixing SS with raw and pretreated AWs at different mixing ratios. Hydrolysis rates were estimated by the best fit obtained with the first-order kinetic model. As a result of the experimental and kinetic studies, the best strategy was determined to be thermochemical pretreatment with sodium hydroxide (NaOH). This strategy resulted in a maximum enhancement in the anaerobic digestion of AWs, a 56% increase in methane production, an 81.90% increase in the hydrolysis rate and a 79.63% decrease in the technical digestion time compared to raw AWs. On the other hand, anaerobic codigestion (AcoD) with SS was determined to be ineffective when it came to the enhancement of methane production and the hydrolysis rate. The most suitable mixing ratio was determined to be 80:20 (Aws/SS) for the AcoD of the studied AWs with SS in order to obtain the highest possible methane production without any antagonistic effect.
Collapse
|
7
|
Fei X, Jia W, Wang J, Chen T, Ling Y. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation. Int J Biol Macromol 2019; 145:733-739. [PMID: 31887387 DOI: 10.1016/j.ijbiomac.2019.12.232] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 01/18/2023]
Abstract
In lignocellulosic biomass biotransformation technology, pretreatment is the most important step to increase the conversion efficiency and reduce cost. The electron beam irradiation (EBI) pretreatment method was discussed in this study. First, the effects of a 0-1200 kGy irradiation dose on saccharification efficiency of lignocellulose biomass (birch) and analytically pure cellulose were studied. Then, the pretreated samples were tested for composition, X-ray diffraction, degree of polymerization, and Fourier transform infrared spectroscopy. Finally, the mechanism of the EBI pretreatment was analyzed from the aspects of lignin content, cellulose crystallinity, cellulose polymerization degree, and cellulose molecular structure. The results show that the EBI pretreatment can significantly improve the efficiency of enzymatic hydrolysis by degrading the lignin in lignocellulose, reducing the crystallinity and polymerization degree of cellulose, and destroying the cellulose molecules. It also obtained that the pretreatment of cellulose and lignocellulose with irradiation has a different trend in enzymatic hydrolysis efficiency with irradiation dose. This indicates that there is a difference in irradiation effects between pure cellulose and lignocellulose. And a possible degradation pathway of cellulose was proposed. This study has important guide for the application and development of EBI pretreatment methods.
Collapse
Affiliation(s)
- Xionghui Fei
- Department of nuclear science and technology, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 200016, China
| | - Wenbao Jia
- Department of nuclear science and technology, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 200016, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215021, China
| | - Junqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ting Chen
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yongsheng Ling
- Department of nuclear science and technology, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 200016, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215021, China.
| |
Collapse
|
8
|
A Review on Anaerobic Digestion of Lignocellulosic Wastes: Pretreatments and Operational Conditions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214655] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion (AD) has become extremely popular in the last years to treat and valorize organic wastes both at laboratory and industrial scales, for a wide range of highly produced organic wastes: municipal wastes, wastewater sludge, manure, agrowastes, food industry residuals, etc. Although the principles of AD are well known, it is very important to highlight that knowing the biochemical composition of waste is crucial in order to know its anaerobic biodegradability, which makes an AD process economically feasible. In this paper, we review the main principles of AD, moving to the specific features of lignocellulosic wastes, especially regarding the pretreatments that can enhance the biogas production of such wastes. The main point to consider is that lignocellulosic wastes are present in any organic wastes, and sometimes are the major fraction. Therefore, improving their AD could cause a boost in the development in this technology. The conclusions are that there is no unique strategy to improve the anaerobic biodegradability of lignocellulosic wastes, but pretreatments and codigestion both have an important role on this issue.
Collapse
|
9
|
Sukhesh MJ, Rao PV. Anaerobic digestion of crop residues: Technological developments and environmental impact in the Indian context. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Larsen SU, Hjort-Gregersen K, Vazifehkhoran AH, Triolo JM. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. BIORESOURCE TECHNOLOGY 2017; 245:106-115. [PMID: 28892679 DOI: 10.1016/j.biortech.2017.08.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
This study examined the effect of co-ensiling of wheat straw and sugar beet leaves on the biochemical methane potential (BMP) by both lab-scale and pilot-scale co-ensiling. BMP was increased by co-ensiling, and the increase ranged from 19 to 34% after 9months of co-ensiling in lab-scale and from 18 to 32% after 6months of co-ensiling in pilot-scale. No effluent run-off was found through pilot-scale co-ensiling and there was a mass loss of only 0.1%. The study demonstrates that co-ensiling of straw and green biomass has potential as biological pretreatment and for avoiding effluent run-off from pure beet leave silage.
Collapse
Affiliation(s)
- Søren Ugilt Larsen
- Danish Technological Institute, Agro Food Park 15, DK-8200 Aarhus N, Denmark
| | | | - Ali Heidarzadeh Vazifehkhoran
- University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Environmental Technology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jin Mi Triolo
- University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Environmental Technology, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
11
|
Romero-Güiza MS, Wahid R, Hernández V, Møller H, Fernández B. Improvement of wheat straw anaerobic digestion through alkali pre-treatment: Carbohydrates bioavailability evaluation and economic feasibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:651-659. [PMID: 28402918 DOI: 10.1016/j.scitotenv.2017.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS-1of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS-1d-1, being a favourable case for an eventual scale-up of the combined process.
Collapse
Affiliation(s)
- Maycoll Stiven Romero-Güiza
- IRTA, GIRO-UPC Joint Unit, Torre Marimon, Road C59- km 12, E 08140 Caldes de Montbui, 08140 Barcelona, Spain
| | - Radziah Wahid
- Department of Engineering, Aarhus University, Blichers Allé 20, DK 8830 Tjele, Denmark; Faculty of Chemical Engineering, Universiti Teknologi Mara, 40450 Shah Alam, Malaysia
| | - Verónica Hernández
- Department of Engineering, Aarhus University, Blichers Allé 20, DK 8830 Tjele, Denmark
| | - Henrik Møller
- Department of Engineering, Aarhus University, Blichers Allé 20, DK 8830 Tjele, Denmark
| | - Belén Fernández
- IRTA, GIRO-UPC Joint Unit, Torre Marimon, Road C59- km 12, E 08140 Caldes de Montbui, 08140 Barcelona, Spain.
| |
Collapse
|
12
|
Solé-Bundó M, Eskicioglu C, Garfí M, Carrère H, Ferrer I. Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. BIORESOURCE TECHNOLOGY 2017; 237:89-98. [PMID: 28412147 DOI: 10.1016/j.biortech.2017.03.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
This study aimed at analyzing the anaerobic co-digestion of microalgal biomass grown in wastewater and wheat straw. To this end, Biochemical Methane Potential (BMP) tests were carried out testing different substrate proportions (20-80, 50-50 and 80-20%, on a volatile solid basis). In order to improve their biodegradability, the co-digestion of both substrates was also evaluated after applying a thermo-alkaline pretreatment (10% CaO at 75°C for 24h). The highest synergies in degradation rates were observed by adding at least 50% of wheat straw. Therefore, the co-digestion of 50% microalgae - 50% wheat straw was investigated in mesophilic lab-scale reactors. The results showed that the methane yield was increased by 77% with the co-digestion as compared to microalgae mono-digestion, while the pretreatment only increased the methane yield by 15% compared to the untreated mixture. Thus, the anaerobic co-digestion of microalgae and wheat straw was successful even without applying a thermo-alkaline pretreatment.
Collapse
Affiliation(s)
- Maria Solé-Bundó
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya Barcelona Tech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; LBE, INRA, Avenue des Etangs, F-11100 Narbonne, France
| | - Cigdem Eskicioglu
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya Barcelona Tech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya Barcelona Tech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | | | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya Barcelona Tech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
13
|
Qing Q, Zhou L, Guo Q, Gao X, Zhang Y, He Y, Zhang Y. Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. BIORESOURCE TECHNOLOGY 2017; 233:284-290. [PMID: 28285219 DOI: 10.1016/j.biortech.2017.02.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
An efficient strategy was developed in current work for biochemical conversion of carbohydrates of corn stover into monosaccharides. Corn stover was first presoaked in mild alkaline solution (1% Na2S) under 40°C for 4h, after which about 35.3% of the lignin was successfully removed while the specific surface area was notably enlarged. Then the presoaked solids were subjected to organosolv pretreatment that employed 20% methanol with an addition of 0.2% HCl as catalyst at 160°C for 20min, and the maximum total sugar yield of the pretreated corn stover achieved was 98.6%. The intact structure of corn stover was disrupted by this two-step process, which resulted in a porous but crystalline structure of the regenerated solids that were mainly composed of cellulose. The enlarged specific surface area and increased accessibility made the regenerated solids highly digestible by a moderate enzyme loading.
Collapse
Affiliation(s)
- Qing Qing
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Linlin Zhou
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Qi Guo
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xiaohang Gao
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yan Zhang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yucai He
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yue Zhang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China.
| |
Collapse
|
14
|
Carvalho AR, Fragoso R, Gominho J, Saraiva A, Costa R, Duarte E. Water-energy nexus: Anaerobic co-digestion with elephant grass hydrolyzate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:48-53. [PMID: 27315600 DOI: 10.1016/j.jenvman.2016.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The anaerobic co-digestion process in a continuous stirred-tank reactor (CSTR) was carried out under mesophilic conditions (37 ± 0.2 °C). All the trials were performed at a hydraulic retention time (HRT) of 15 days and the AD reactor was daily fed with a mixture of sewage sludge (SS) and elephant grass hydrolyzate (EGH). In this study, three different trials were assessed, with different mixture proportions of SSSS and EGH: F0 (100:0,v/v), F1 (75:25, v/v) and F2 (50:50, v/v), during 90 days each trial, keeping the organic loading rate (OLR) in a range of 0.94-1.16 g VS L(-1) day(-1). The experimental results obtained showed that the soluble chemical oxygen demand (SCOD) removal efficiency was around 77% and 86% for trials F1 and F2, respectively. SS co-digestion with EGH enhanced methane yield, leading to an increment between 23% and 38%, in comparison with the reference scenario (F0).
Collapse
Affiliation(s)
- A R Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - R Fragoso
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - J Gominho
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - A Saraiva
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - R Costa
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - E Duarte
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| |
Collapse
|
15
|
Reilly M, Dinsdale R, Guwy A. The impact of inocula carryover and inoculum dilution on the methane yields in batch methane potential tests. BIORESOURCE TECHNOLOGY 2016; 208:134-139. [PMID: 26938808 DOI: 10.1016/j.biortech.2016.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Batch studies are used to benchmark biohydrogen potential (BHP) and biomethane potential (BMP) yields from feed substrates, digestates residues and different process configurations. This study shows that BMP yields using cellulose can be biased positively by not diluting the initial sewage sludge inoculum and the bias is independent of starting inoculum volatile solids (VS) concentration. The carryover of BHP inoculum also increased the BMP yields when using cellulose as a substrate by up to 18.8%. Furthermore it was also observed that the dilution of BMP inoculum with deionised H2O reduced methane yields from cellulose by up to 132±26 N mL-CH4 g-VS(-1). Therefore it is proposed that inoculum and standard substrate controls (as used in this study) should be included in methane batch methodologies, particularly when using a pre-fermentation stage such as dark fermentation.
Collapse
Affiliation(s)
- Matthew Reilly
- Agricultural Centre for Sustainable Energy Systems (ACSES), Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom.
| | - Richard Dinsdale
- Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science, University Of South Wales, Upper Glyntaff, Pontypridd CF37 1BD, United Kingdom
| | - Alan Guwy
- Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science, University Of South Wales, Upper Glyntaff, Pontypridd CF37 1BD, United Kingdom
| |
Collapse
|
16
|
Bolado-Rodríguez S, Toquero C, Martín-Juárez J, Travaini R, García-Encina PA. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. BIORESOURCE TECHNOLOGY 2016; 201:182-90. [PMID: 26642223 DOI: 10.1016/j.biortech.2015.11.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/23/2023]
Abstract
The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment.
Collapse
Affiliation(s)
- Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain.
| | - Cristina Toquero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Judit Martín-Juárez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Rodolfo Travaini
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Pedro Antonio García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|