1
|
The high-efficient production of phelligridin LA by Inonotus baumii with an integrated fermentation-separation process. Bioprocess Biosyst Eng 2020; 43:1141-1151. [PMID: 32078046 DOI: 10.1007/s00449-020-02310-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
The phelligridin LA was one of the valuable metabolites synthesized by the medicinal fungus Sanghuang in liquid fermentation. In the improvement of PLA productivity by fermentation, we investigated the optimal conditions for the efficient separation of PLA from the fermentation broth with a chromatographic column packed with the macroporous resin ADS-17. Based on the findings, we further developed an integrated bioreactor system that coupled the fermentation and separation of PLA. Fermentation experiments with the bioreactor system testified the performance of our design in fortification of the PLA production: an improvement of PLA production by 2.14 folds was successfully achieved due to the prompt removal of the PLA, while the formation of hyphae biomass was not affected. Also, the integrated system could afford a simultaneous purification of PLA to a purity of 92.95% with a recovery of 84.3%, which was comparable to that of the PLA purified with an additional process (97.53%), at a reasonable recovery. This study provided a feasible approach for the improved production of PLA by fermentation. Besides, the design of the integrated bioreactor system offered a useful reference for the fermentation process development of fungi for the production of diverse valuable metabolites.
Collapse
|
2
|
Carboneras MB, Rodrigo MA, Canizares P, Villasenor J, Fernandez-Morales FJ. Removal of oxyfluorfen from polluted effluents by combined bio-electro processes. CHEMOSPHERE 2020; 240:124912. [PMID: 31574437 DOI: 10.1016/j.chemosphere.2019.124912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In this work, the combination of biological and electrochemical processes to mineralize oxyfluorfen has been studied. First, an acclimatized mixed-culture biological treatment was used to degrade the biodegradable fraction of the pesticide, reaching up to 90% removal. After that, the non-biodegraded fraction was oxidised by electrolysis using boron-doped diamond as the anode. The results showed that the electrochemical technique was able to completely mineralize the residual pollutants. The study of the influence of the supporting electrolyte on the electrochemical process showed that the trace mineral solution used in the biological treatment was enough to completely mineralize the oxyfluorfen, resulting in total organic carbon removal rates that were well-fitted by a first-order model with a kinetic constant of 0.91 h-1. However, the first-order degradation rate increased approximately 20% when Na2SO4 was added as supporting electrolyte, reaching a degradation rate of 1.16 h-1 with a power consumption that was approximately 70% lower.
Collapse
Affiliation(s)
- M B Carboneras
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - P Canizares
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - J Villasenor
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - F J Fernandez-Morales
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
4
|
Tashiro Y, Inokuchi S, Poudel P, Okugawa Y, Miyamoto H, Miayamoto H, Sakai K. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system. BIORESOURCE TECHNOLOGY 2016; 216:52-59. [PMID: 27233097 DOI: 10.1016/j.biortech.2016.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2gL(-1); OPl-LA, 100%; SLA, 96.6%; productivity, 1.09gL(-1)h(-1). These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems.
Collapse
Affiliation(s)
- Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Shota Inokuchi
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Pramod Poudel
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuki Okugawa
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hirokuni Miyamoto
- Japan Eco-Science (Nikkan Kagaku) Co. Ltd, 11-2 Shiomigaokacho, Chuo-ku, Chiba 260-0034, Japan; Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Chiba 263-8522, Japan
| | | | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|