1
|
Abdul Hadi M, Kadhim MM, Sabri Abbas Z, Hachim SK, Abdullaha SA, Mahdi Rheima A. Investigation the sensing behavior of pristine and Ti-doped C2N monolayer toward H2S gas. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
2
|
Ma K, Wang Y, Zheng Y, Xiao J, Xu L, Dai X, Wang Z. Adsorption Mechanism and Optical Behaviors of Typical Volatile Organic Compounds on Pristine and Cu/Ni‐Modified C
3
N Monolayer: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kexin Ma
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yanwen Wang
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yunxin Zheng
- College of Science Guilin University of Technology Guilin 541008 China
| | - Jianrong Xiao
- College of Science Guilin University of Technology Guilin 541008 China
| | - Liang Xu
- Energy Materials Computing Center, School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Nanchang 330013 China
| | - Xueqiong Dai
- College of Science Guilin University of Technology Guilin 541008 China
| | - Zhiyong Wang
- College of Science Guilin University of Technology Guilin 541008 China
| |
Collapse
|
3
|
Zhuang Z, Zhang L, Huang C, Wang X, Guo H, Thomas T, Qu F, Wang P, Yang M. A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe 2O 3nanocrystals. NANOTECHNOLOGY 2022; 33:405502. [PMID: 35334476 DOI: 10.1088/1361-6528/ac614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Surface modification by employing precious metals is one of the most effective ways to improve the gas-sensing performance of metal oxide semiconductors. Pureα-Fe2O3nanoparticles and Pt-modifiedα-Fe2O3nanoparticles were prepared sequentially using a rather simple hydrothermal synthesis and impregnation method. Compared with the originalα-Fe2O3nanomaterials, the Pt-α-Fe2O3nanocomposite sensor shows a higher response value (Ra/Rg = 58.6) and a shorter response/recovery time (1 s/168 s) to 100 ppm dimethyl disulfide (DMDS) gas at 375 °C. In addition, it has better selectivity to DMDS gas with the value of more than 9 times higher than the other target gases at 375 °C. This study indicates that the Pt-α-Fe2O3nanoparticle sensor has good prospects and can be used as a low-cost and effective DMDS gas sensor.
Collapse
Affiliation(s)
- Ziqin Zhuang
- Materials Science and Engineering Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Li Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Chaozhu Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xiaohang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Haichuan Guo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, Tamil Nadu, India
| | - Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Pei Wang
- Materials Science and Engineering Department, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
4
|
Bu H, Carvalho G, Huang C, Sharma KR, Yuan Z, Song Y, Bond P, Keller J, Yu M, Jiang G. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. CHEMOSPHERE 2022; 291:132723. [PMID: 34736744 DOI: 10.1016/j.chemosphere.2021.132723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Biotrickling filter (BTF) is a widely applied bioreactor for odour abatement in sewer networks. The trickling strategy is vital for maintaining a sound operation of BTF. This study employed a lab-scale BTF packed with granular activated carbon at a short empty bed residence time of 6 s and pH 1-2 to evaluate different trickling strategies, i.e., continuous trickling (different velocities) and intermittent trickling (different trickling intervals), in terms of the removal of hydrogen sulfide (H2S), bed pressure drop, H2S oxidation products and microbial community. The H2S removal performance decreased with the trickling velocity (∼3.6 m/h) in BTF. In addition, three intermittent trickling strategies, i.e., 10-min trickling per 24 h, 8 h, and 2 h, were investigated. The H2S elimination capacity deteriorated after about 2 weeks under both 10-min trickling per 24 h and 8 h. For both intermittent (10-min trickling per 2 h) and continuous trickling, the BTF exhibited nearly 100 % H2S removal for inlet H2S concentrations<100 ppmv, but intermittent BTF showed better removal performance than continuous trickling when inlet H2S increased to 120-190 ppmv. Furthermore, the bed pressure drops were 333 and 3888 Pa/m for non-trickling and trickling periods, respectively, which makes intermittent BTF save 83 % energy consumption of the blower compared with continuous tirckling. However, intermittent BTF exhibited transient H2S breakthrough (<1 ppmv) during trickling periods. Moreover, elemental sulfur and sulfate were major products of H2S oxidation and Acidithiobacillus was the dominant genus in both intermittent and continuous trickling BTF. A mathematical model was calibrated for the intermittent BTF and a sensitivity analysis was performed on the model. It shows mass transfer parameters determine the H2S removal. Overall, intermittent trickling strategy is promising for improving odour abatement performance and reducing the operating cost of the BTF.
Collapse
Affiliation(s)
- Hao Bu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia.
| | - Casey Huang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Keshab R Sharma
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Yarong Song
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Philip Bond
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Jurg Keller
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Miao Yu
- Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia; School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
5
|
Lu L, Dong D, Yeung M, Sun Z, Xi J. Sustaining low pressure drop and homogeneous flow by adopting a fluidized bed biofilter treating gaseous toluene. CHEMOSPHERE 2022; 291:132951. [PMID: 34826444 DOI: 10.1016/j.chemosphere.2021.132951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
A biofilter treating gaseous VOCs is usually a packed bed system which will encounter bed clogging problems with increased pressure drop and uneven gas flow in the filter bed. In this study, a lab-scale fluidized bed reactor (FBR) was set up treating gaseous toluene and compared with a packed bed reactor (PBR) with the same bed height of 150 cm. During 45 days of operation, the average elimination capacity of the FBR was 242 g m-3∙h-1, similar to that in the PBR (228 g m-3∙h-1) under an inlet toluene concentration of 100-300 mg m-3 and an empty bed residence time (EBRT) of 0.60 s. A better mass transfer was also confirmed in the FBR by molecular residence time distribution measurement. The pressure drop of the PBR increased dramatically and exceeded 8000 Pa m-1 while that of the FBR maintained approximately 200 Pa m-1. On the 40th day, the air flow distribution in the FBR was more homogeneous than that in the PBR. The differences in pressure drop and air flow distribution were due to a much lower and more uniform distribution of biomass in the FBR than that in the PBR. The detached biomass collected from the off-gas of the FBR was almost 13 times of that from the PBR. Similar microbial community structures were observed in both systems, with the dominant bacterial genus Stenotrophomonas and the fungal genera Meyerozyma, Aspergillus. The results in this study demonstrated that the FBR could achieve a more stable performance than a PBR in long-term operation.
Collapse
Affiliation(s)
- Lichao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dong Dong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Yao X, Shi Y, Wang K, Wang C, He L, Li C, Yao Z. Highly efficient degradation of hydrogen sulfide, styrene, and m-xylene in a bio-trickling filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152130. [PMID: 34863757 DOI: 10.1016/j.scitotenv.2021.152130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Controlling the release of malodorous gas discharged from wastewater treatment plants (WWTPs) has become an urgent environmental problem in recent years. In this study, a bio-trickling filter (BTF) inoculated with microorganisms acclimated to activated sludge in a WWTP was used as the degradation equipment. A continuous degradation experiment with hydrogen sulfide, styrene, and m-xylene in the BTF lasted for 84 days (12 weeks). The degradation capacities of the BTF for hydrogen sulfide, styrene, and m-xylene were evaluated, and the synergy and inhibition among the substrates during biodegradation are discussed. The results indicated that the degradation efficiencies of the BTF were as high as 99.2% for hydrogen sulfide, 94.6% for styrene, and 100.0% for m-xylene. When the empty bed residence time was 30 s, the maximum elimination capacities (EC) achieved for hydrogen sulfide was 38 g m-3 h-1, for styrene was 200 g m-3 h-1, and for m-xylene was 75 g m-3 h-1. Furthermore, the microbial species and quantity of microorganisms in the middle and top of the BTF were much higher than those at the bottom of the BTF. A variety of microorganisms in the BTF can efficiently degrade the typical and highly toxic malodorous gases released from WWTPs. This study can help increase the understanding of the degradation of a mixture of sulfur-containing substances and aromatic hydrocarbons in BTF degradation and promote the development of technologies for the reduction of a complex mixture of malodorous gas emissions from organic wastewater treatment.
Collapse
Affiliation(s)
- Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
7
|
Co-Treatment with Single and Ternary Mixture Gas of Dimethyl Sulfide, Propanethiol, and Toluene by a Macrokinetic Analysis in a Biotrickling Filter Seeded with Alcaligenes sp. SY1 and Pseudomonas Putida S1. FERMENTATION 2021. [DOI: 10.3390/fermentation7040309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The biotrickling filter (BTF) treatment is an effective way of dealing with air pollution caused by volatile organic compounds (VOCs). However, this approach is typically used for single VOCs treatment but not for the mixtures of VOC and volatile organic sulfur compounds (VOSCs), even if they are often encountered in industrial applications. Therefore, we investigated the performance of BTF for single and ternary mixture gas of dimethyl sulfide (DMS), propanethiol, and toluene, respectively. Results showed that the co-treatment enhanced the removal efficiency of toluene, but not of dimethyl sulfide or propanethiol. Maximum removal rates (rmax) of DMS, propanethiol and toluene were calculated to be 256.41 g·m−3·h−1, 204.08 g·m−3·h−1 and 90.91 g·m−3·h−1, respectively. For a gas mixture of these three constituents, rmax was measured to be 114.94 g·m−3·h−1, 104.17 g·m−3·h−1 and 99.01 g·m−3·h−1, separately. Illumina MiSeq sequencing analysis further indicated that Proteobacteria and Bacteroidetes were the major bacterial groups in BTF packing materials. A shift of bacterial community structure was observed during the biodegradation process.
Collapse
|
8
|
Yin Z, Zhang L, Li R. Effects of additives on physical, chemical, and microbiological properties during green waste composting. BIORESOURCE TECHNOLOGY 2021; 340:125719. [PMID: 34365299 DOI: 10.1016/j.biortech.2021.125719] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Composting is an environmentally friendly and sustainable way to transform Green waste (GW) into a useful product. GW, however, contains substantial quantities of lignocelluloses that extend the composting period unless substances that accelerate composting are added. The objective of this research was to assess the influence of the following additives on GW composting (w/w dry matter contents of the additives were indicated): sugarcane bagasse at 15%; bean dregs at 35%; silage at 45%; flue gas desulfurization gypsum at 5%; maifanite at 4%; and furfural residue at 20%. Based on the composting temperature, compost density, porosity, particle-size distribution, water retention, pH, cation exchange capacity, available nutrient contents, humification coefficient, organic matter loss, microbial populations, and phytotoxicity, the best additives were 45% silage and 5% flue gas desulfurization gypsum. The latter two additives produced a high-quality product in only 35 and 37 days, respectively.
Collapse
Affiliation(s)
- Zexin Yin
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Ruinan Li
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
9
|
Zhang Y, Liu J, Chen Y, Li J. Screening and study of the degradation characteristics of efficient toluene degrading bacteria combinations. ENVIRONMENTAL TECHNOLOGY 2021; 42:3403-3410. [PMID: 32070244 DOI: 10.1080/09593330.2020.1732477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this paper, three effective toluene-degrading bacteria were obtained through acclimation and screening by using landfill leachate as the initial liquid strain. The three obtained bacteria were denoted as J1, J2 and J3, and identified as Pseudomonas, Bacillus and Staphylococcus, respectively. We then identified the optimal combination of these toluene-degrading bacteria in the laboratory. The combination of J1 + J3 (1:1) exhibited the highest toluene removal efficiency (RE). A vertical bio-trickling filter (BTF) packed with ceramsite was started by inoculation with the effective combination. The performance of the BTF in treating toluene under various operating conditions was investigated. After 17 days of operation, the toluene RE reached about 90% and the maximum elimination capacity reached 42.0 g m-3 h-1. The scanning electron microscope (SEM) showed that after the successful start-up of the BTF, the biofilm on the packing surface primarily consisted of Bacillus and Staphylococcus. During the stable state, the RE of the BTF was maintained above 80%, the shortest empty bed residence time was 34 s and toluene concentrations ranged between 300 and 800 mg m-3. The results indicate that the BTF started using the effective combination of bacteria described here is robust. This paper also provides a preliminary analysis of the mechanism of microbial degradation of pollutants in the BTF.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Ying Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Jian Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| |
Collapse
|
10
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
11
|
Rahimi R, Solimannejad M, Chaudhari A. Toxic volatile organic compounds sensing by Al 2C monolayer: A first-principles outlook. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123600. [PMID: 32791480 DOI: 10.1016/j.jhazmat.2020.123600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Adsorption and detection performance of two-dimensional Al2C monolayer for four toxic volatile organic compounds (VOCs) viz. acetaldehyde, ethylene oxide, vinyl chloride, and benzene are investigated using first-principles calculations based on the periodic density functional theory. The band gap of Al2C nanosheet is changed substantially from 0.9 eV to 0.52, 1.41, 1.57, and 0.42 eV upon interaction with acetaldehyde, ethylene oxide, vinyl chloride, and benzene molecules respectively. The Al2C nanosheet maintains its semiconductor properties even after the adsorption of the four VOCs. The adsorption energy of four typical toxic volatile organic compounds (VOCs) viz. acetaldehyde, ethylene oxide, vinyl chloride, and benzene on the Al2C monolayer is in a range of -1.972 eV to -2.244 eV, which is higher than the adsorption energies obtained for several other VOCs adsorbed on different materials. Larger VOCs adsorption energies on Al2C monolayer obtained here may lead to adsorption of more VOC molecules on the material and consequently enhanced sensitivity. The results of ab initio molecular dynamics (AIMD) calculations for the studied complexes confirm their stability under the considered conditions of the simulation. Pristine Al2C monolayer might be a superior adsorbent and a promising sensing medium for toxic VOCs in real applications.
Collapse
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran; Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran; Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran.
| | - Ajay Chaudhari
- Department of Physics, The Institute of Science, Dr. Homi Bhabha State University, Mumbai, 400032, India.
| |
Collapse
|
12
|
Zhang Y, Liu J, Xing H, Li J. Performance and fungal diversity of bio-trickling filters packed with composite media of polydimethylsiloxane and foam ceramics for hydrophobic VOC removal. CHEMOSPHERE 2020; 256:127093. [PMID: 32470731 DOI: 10.1016/j.chemosphere.2020.127093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Bio-trickling filters (BTFs) can be used for the treatment of hydrophobic VOC-contaminated air. To improve treatment performance, two novel polydimethylsiloxane (PDMS) packing media were produced and trialled in BTFs inoculated with Cladophialophora fungus. The BTF packed with PDMS/foam ceramic composite filler showed superior performance: rapid start-up within 3 days, rapid restart within 7 days after starvation for 1 month, a maximum toluene elimination capacity (EC) of 264.4 g m-3·h-1 at an empty bed residence time of 10 s, and a pressure drop that was controllable by adjusting the nutrient supply regime. High-throughput sequencing was used to analyse the effect of spatial position on the microbial communities in the top and bottom filler layers. Meanwhile, by investigating the EC in the vertical direction of the BTF, spatial heterogeneity in the fungal degradation of a hydrophobic VOC was preliminarily explored.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hehe Xing
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
13
|
Gao J, Zhang X, Yu J, Lei Y, Zhao S, Jiang Y, Xu Z, Cheng J. Cr(VI) removal performance and the characteristics of microbial communities influenced by the core-shell maifanite/ZnAl-layered double hydroxides (LDHs) substrates for chromium-containing surface water. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Han Z, Qi F, Li R, Wang H, Sun D. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. CHEMOSPHERE 2020; 249:126077. [PMID: 32045752 DOI: 10.1016/j.chemosphere.2020.126077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Aerobic composting and anaerobic digestion with hydrolysis pretreatment are two mainstream methods used to recycle and reclaim sewage sludge. However, during these sludge treatment processes, many odors are emitted that may cause severe emotional disturbance and health risks to those exposed. This study identified odor pollution (i.e. sensory influence, odor contribution, and human risks) from samples collected during sludge aerobic composting throughout different seasons as well as during anaerobic digestion with hydrolysis pretreatment. Odor intensity, odor active values, and permissible concentration-time weighted averages for ammonia and five volatile sulfur compounds were assessed. The results revealed serious odor pollution from all sampling sites during aerobic composting, especially in winter. Excessively strong odors were identified in the composting workshop, with total odor active values between 997 and 8980 which accounted for 78.45%-96.18% of the total sludge aerobic composting plant. Levels of ammonia and dimethyl disulfide in the ambient air were high enough to harm employees' health. During anaerobic digestion, excessively strong odors were identified in dehydration workshop 2, and the total odor active values of six odors reached 32,268, with ammonia and hydrogen sulfide levels significant enough to harm human health.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Chen T, Piao M, Ehsanur Rahman SM, Zhang L, Deng Y. Influence of fermentation on antioxidant and hypolipidemic properties of maifanite mineral water-cultured common buckwheat sprouts. Food Chem 2020; 321:126741. [PMID: 32276146 DOI: 10.1016/j.foodchem.2020.126741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Buckwheat sprouts (BS) becomes popular due to its' health-promoting properties as food product. The effects of fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum on antioxidant and hypolipidemic activities as well as functional composition in common BS cultivated in maifanite mineral water were investigated here. DPPH and ·OH results showed higher antioxidant potential in fermented BS compared to unfermented BS, due to the higher rutin, orientin, isoorientin, vitexin, isovitexin, and total phenolic and flavonoid contents. The S. cerevisiae-fermented BS also exhibited 113% and 110% higher DPPH and ·OH scavenging activities than the L. plantarum-fermented BS, respectively. In hyperlipidemic mice, blood lipid parameters were improved as dose-dependent manner when supplemented the food with S. cerevisiae-fermented BS. Fermented BS also restored liver antioxidant levels significantly. The fermented BS had greater effect on different parameters than those of unfermented BS. Therefore, fermentation is a valuable method to enhance the bioactive potential of BS.
Collapse
Affiliation(s)
- Tiejun Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meizi Piao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Syed Md Ehsanur Rahman
- Interdisciplinary Institute of Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Lehong Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
16
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|
17
|
Zhang X, Dou Y, Gao C, He C, Gao J, Zhao S, Deng L. Removal of Cd(II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:951-962. [PMID: 31247441 DOI: 10.1016/j.scitotenv.2019.06.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
To improve the adsorption performance of Cd(II) by maifanite in constructed rapid infiltration systems (CRIS), Mg-layered double hydroxides (MgAl-LDHs, MgFe-LDHs) are prepared by a co-precipitation method and in-situ coated on the surface of original maifanite. Characterization of the successful LDHs-coating modification is realized by the following: scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Brunauer Emmett Teller (BET). In the purification experiments, the average removal rates of Cd(II) were 97.66% for maifanite/MgAl-LDHs and 97.54% for maifanite/MgFe-LDHs, approximately 11% greater than for the original maifanite. Isothermal adsorption experiments and adsorption kinetic experiments were conducted to explore the Cd(II) adsorption mechanism. The modified maifanite demonstrated a higher Langmuir adsorption capacity and stronger surface bond energies compared to the original maifanite. The adsorption type of Cd(II) by maifanite/Mg-LDHs and original maifanite was monolayer adsorption based mainly on chemical adsorption. Furthermore, the extracellular polymeric substances and dehydrogenase activities of the microorganisms were measured and analyzed to study the effect of microorganisms on the removal of Cd(II) in the test columns. High-throughput sequencing technology was also applied to analyze the composition and diversity of bacterial communities. Based on a simple estimation, the synthesis cost of maifanite/MgAl-LDHs was only ¥ 0.33/Kg. In brief, maifanite/Mg-LDHs is an efficient and economical substrate for a CRIS for Cd(II) removal.
Collapse
Affiliation(s)
- Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Yankai Dou
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chenguang Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chunyan He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jingtian Gao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shuangjie Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Lichu Deng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
18
|
Tu X, Xu M, Li J, Li E, Feng R, Zhao G, Huang S, Guo J. Enhancement of using combined packing materials on the removal of mixed sulfur compounds in a biotrickling filter and analysis of microbial communities. BMC Biotechnol 2019; 19:52. [PMID: 31345193 PMCID: PMC6659214 DOI: 10.1186/s12896-019-0540-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background Packing materials is a critical design consideration when employing biological reactor to treat malodorous gases. The acidification of packing bed usually results in a significant drop in the removal efficiency. In the present study, a biotrickling filter (BTF2) packed with plastic balls in the upper layer and with lava rocks in the bottom layer, was proposed to mitigate the acidification. Results Results showed that using combined packing materials efficiently enhanced the removal performance of BTF2 when compared with BTF1, which was packed with sole lava rocks. Removal efficiencies of more than 92.5% on four sulfur compounds were achieved in BTF2. Average pH value in its bottom packing bed was about 4.86, significantly higher than that in BTF1 (2.85). Sulfate and elemental sulfur were observed to accumulate more in BTF1 than in BTF2. Analysis of principal coordinate analysis proved that structure of microbial communities in BTF2 changed less after the shutdown but more when the initial pH value was set at 5.5. Network analysis of significant co-occurrence patterns based on the correlations between microbial taxa revealed that BTF2 harbored more diverse microorganisms involving in the bio-oxidation of sulfur compounds and had more complex interactions between microbial species. Conclusions Results confirmed that using combined packing materials effectively improved conditions for the growth of microorganisms. The robustness of reactor against acidification, adverse temperature and gas supply shutdown was greatly enhanced. These provided a theoretical basis for using mixed packing materials to improve removal performance.
Collapse
Affiliation(s)
- Xiang Tu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Jianjun Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China. .,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China. .,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China.
| | - Enze Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Rongfang Feng
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Gang Zhao
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jun Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| |
Collapse
|
19
|
Wu H, Yan H, Quan Y, Zhao H, Jiang N, Yin C. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:409-419. [PMID: 29883876 DOI: 10.1016/j.jenvman.2018.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Pollution caused by volatile organic compounds (VOCs) and odorous pollutants in the air can produce severe environmental problems. In recent years, the emission control of VOCs and odorous pollutants has become a crucial issue owing to the adverse effect on humans and the environment. For treating these compounds, biotrickling filter (BTF) technology acts as an environment friendly and cost-effective alternative to conventional air pollution control technologies. Besides, low concentration of VOCs and odorous pollutants can also be effectively removed using BTF systems. However, the VOCs and odorants removal performance by BTF may be limited by the hydrophobicity, toxicity, and low bioavailability of these pollutants. To solve these problems, this review summarizes the design, mechanism, and common analytical methods of recent BTF advances. In addition, the operating conditions, mass transfer, packing materials and microorganisms (which are the critical parameters in a BTF system) were evaluated and discussed in view of improving the removal performance of BTFs. Further research on these specific topics, together with the combination of BTF technology with other technologies, should improve the removal performance of BTFs.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huayu Yan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huazhang Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Nanzhe Jiang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China.
| |
Collapse
|
20
|
Zhang L, Sun X. Evaluation of maifanite and silage as amendments for green waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:435-446. [PMID: 29699726 DOI: 10.1016/j.wasman.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
21
|
Yao P, Liu H, Wang D, Chen J, Li G, An T. Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework. J Colloid Interface Sci 2018; 522:174-182. [PMID: 29601959 DOI: 10.1016/j.jcis.2018.03.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Poor visible-light-driven activity and deactivation property as well as wide band gap of the most common TiO2 photocatalyst significantly limits its practical application in volatile organic compounds (VOCs) purification. In this study, tiny TiO2 nanoparticles incorporated into a typical metal-organic framework (MOF), NH2-UiO-66, with controllable TiO2 content and size, were synthesized based on the hard-soft acid-base (HSAB) principle and applied to VOCs purification. Compared to bare TiO2, the TiO2@NH2-UiO-66 composites could extend the optical absorption to the visible light range and accelerate the photogenerated electrons-holes separation, due to the excellent interface contact between TiO2 and NH2-UiO-66. Moreover, the abundant interconnected 3D cavities of the outer MOF allowed for VOCs to easily diffuse into the pores, producing a concentration microenvironment around the encapsulated TiO2. The TiO2@NH2-UiO-66 composites exhibited a markedly improved photocatalytic efficiency and a good resistance to deactivation during the photocatalytic degradation of gaseous styrene under visible light illumination, which were associated with the synergetic effects between the TiO2 and MOF. The TiO2@NH2-UiO-66 with 5 wt% TiO2 could efficiently mineralize styrene to CO2 to some extent companying with the removal ratio >99% within 600 min, whereas the removal efficiency over the bare TiO2 only 32.5%.
Collapse
Affiliation(s)
- Pengzhao Yao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongli Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongtao Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
22
|
Arellano-García L, Le Borgne S, Revah S. Simultaneous treatment of dimethyl disulfide and hydrogen sulfide in an alkaline biotrickling filter. CHEMOSPHERE 2018; 191:809-816. [PMID: 29145133 DOI: 10.1016/j.chemosphere.2017.10.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/26/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Foul odors comprise generally a complex mixture of molecules, where reduced sulfur compounds play a key role due to their toxicity and low odor threshold. Previous reports on treating mixtures of sulfur compounds in single biofilters showed that hydrogen sulfide (H2S) interferes with the removal and degradation of other sulfur compounds. In this study, hydrogen sulfide (H2S) and dimethyl disulfide (DMDS) were fed to an alkaline biotrickling filter (ABTF) at pH 10, to evaluate the simultaneous removal of inorganic and organic sulfur compounds in a single, basic-pH system. The H2S-DMDS mixture was treated for more than 200 days, with a gas residence time of 40 s, attaining elimination capacities of 86 gDMDS m-3 h-1 and 17 gH2S m-3 h-1 and removal efficiencies close to 100%. Conversion of H2S and DMDS to sulfate was generally above 70%. Consumption of sulfide and formaldehyde was verified by respirometry, suggesting the coexistence of both methylotrophic and chemoautotrophic breakdown pathways by the immobilized alkaliphilic biomass. The molecular biology analysis showed that the long-term acclimation of the ABTF led to a great variety of bacteria, predominated by Thioalkalivibrio species, while fungal community was notoriously less diverse and dominated by Fusarium species.
Collapse
Affiliation(s)
- Luis Arellano-García
- Depto. Procesos y Tecnología, UAM Cuajimalpa, Av. Vasco de Quiroga 4871, Mexico City, 05300, Mexico
| | - Sylvie Le Borgne
- Depto. Procesos y Tecnología, UAM Cuajimalpa, Av. Vasco de Quiroga 4871, Mexico City, 05300, Mexico
| | - Sergio Revah
- Depto. Procesos y Tecnología, UAM Cuajimalpa, Av. Vasco de Quiroga 4871, Mexico City, 05300, Mexico.
| |
Collapse
|
23
|
Cheng Z, Lu L, Kennes C, Ye J, Yu J, Chen D, Chen J. A composite microbial agent containing bacterial and fungal species: Optimization of the preparation process, analysis of characteristics, and use in the purification for volatile organic compounds. BIORESOURCE TECHNOLOGY 2016; 218:751-760. [PMID: 27423036 DOI: 10.1016/j.biortech.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Proper preservation of microbial activity over long periods poses a considerable challenge for pollutant biopurification. A composite microbial agent, mainly composed of bacteria and fungi isolated by the current research team, was constructed in this study and its performance in the removal of mixed waste gases (containing α-pinene, n-butyl acetate and o-xylene) was investigated. According to the removal efficiency in the first 24h and the response to starvation, the optimal ratio of selected carriers (activated carbon, wheat bran and sawdust) was found to be 1:2:1. In some cases of storages, the removal capability of the microbial agent was more than twice that of the suspension. Microbial analysis showed that the inoculated bacterial and fungal strains dominated the agent preparation and utilization. These results indicated that the agent has potential for use in biopurification of mixed waste gas, favoring the reduction of environmental passives and longer retention of microbial activity.
Collapse
Affiliation(s)
- Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lichao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, University of La Coruña, Spain
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|