1
|
Pardo-Tamayo JS, Arteaga-Collazos S, Domínguez-Hoyos LC, Godoy CA. Biocatalysts Based on Immobilized Lipases for the Production of Fatty Acid Ethyl Esters: Enhancement of Activity through Ionic Additives and Ion Exchange Supports. BIOTECH 2023; 12:67. [PMID: 38131679 PMCID: PMC10742180 DOI: 10.3390/biotech12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023] Open
Abstract
Ionic additives affect the structure, activity and stability of lipases, which allow for solving common application challenges, such as preventing the formation of protein aggregates or strengthening enzyme-support binding, preventing their desorption in organic media. This work aimed to design a biocatalyst, based on lipase improved by the addition of ionic additives, applicable in the production of ethyl esters of fatty acids (EE). Industrial enzymes from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML), Candida antárctica B (CALB) and Lecitase®, immobilized in commercial supports like Lewatit®, Purolite® and Q-Sepharose®, were tested. The best combination was achieved by immobilizing lipase TLL onto Q-Sepharose® as it surpassed, in terms of %EE (70.1%), the commercial biocatalyst Novozyme® 435 (52.7%) and was similar to that of Lipozyme TL IM (71.3%). Hence, the impact of ionic additives like polymers and surfactants on both free and immobilized TLL on Q-Sepharose® was assessed. It was observed that, when immobilized, in the presence of sodium dodecyl sulfate (SDS), the TLL derivative exhibited a significantly higher activity, with a 93-fold increase (1.02 IU), compared to the free enzyme under identical conditions (0.011 IU). In fatty acids ethyl esters synthesis, Q-SDS-TLL novel derivatives achieved results similar to commercial biocatalysts using up to ~82 times less enzyme (1 mg/g). This creates an opportunity to develop biocatalysts with reduced enzyme consumption, a factor often associated with higher production costs. Such advancements would ease their integration into the biodiesel industry, fostering a greener production approach compared to conventional methods.
Collapse
Affiliation(s)
- Juan S. Pardo-Tamayo
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 760042, Colombia (L.C.D.-H.)
| | | | | | - César A. Godoy
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 760042, Colombia (L.C.D.-H.)
| |
Collapse
|
2
|
Elhussiny NI, Mohamed AMA, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA, Klöck G. Biocatalysis of triglycerides transesterification using fungal biomass: a biorefinery approach. Fungal Biol Biotechnol 2023; 10:12. [PMID: 37308926 DOI: 10.1186/s40694-023-00160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The use of microbial biomasses, such as fungal biomass, to catalyze the transesterification of triglycerides (TG) for biodiesel production provides a sustainable, economical alternative while still having the main advantages of expensive immobilized enzymes. RESULTS Biomasses of Aspergillus flavus and Rhizopus stolonifera were used to catalyze the transesterification of TG in waste frying oil (WFO). Isopropanol as an acyl-acceptor reduced the catalytic capability of the biomasses, while methanol was the most potent acyl-acceptor with a final fatty acid methyl ester (FAME) concentration of 85.5 and 89.7%, w/w, for R. stolonifer and A. flavus, respectively. Different mixtures of the fungal biomasses were tested, and higher proportions of A. flavus biomass improved the mixture's catalytic capability. C. sorokiniana cultivated in synthetic wastewater was used as feedstock to cultivate A. flavus. The biomass produced had the same catalytic capability as the biomass produced in the control culture medium. Response surface methodology (RSM) was adopted using central composite design (CCD) to optimize the A. flavus biomass catalytic transesterification reaction, where temperature, methanol concentration, and biomass concentration were selected for optimization. The significance of the model was verified, and the suggested optimum reaction conditions were 25.5 °C, 250 RPM agitation with 14%, w/w, biomass, 3 mol/L methanol, and a reaction duration of 24 h. The suggested optimum conditions were tested to validate the model and a final FAME concentration of 95.53%. w/w was detected. CONCLUSION Biomasses cocktails might be a legitimate possibility to provide a cheaper technical solution for industrial applications than immobilized enzymes. The use of fungal biomass cultivated on the microalgae recovered from wastewater treatment for the catalysis of transesterification reaction provides an additional piece of the puzzle of biorefinery. Optimizing the transesterification reaction led to a valid prediction model with a final FAME concentration of 95.53%, w/w.
Collapse
Affiliation(s)
- Nadeem I Elhussiny
- Department of Life Science and Chemistry, Constructor University, Bremen Campus Ring 1, 28759, Bremen, Germany.
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences, 28199, Bremen, Germany.
| | - Ahmed M A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Helwan University, 11795, Cairo, Egypt
| | - Heba A El-Refai
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Sayeda S Mohamed
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yousseria M Shetaia
- Department of Microbiology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Hala A Amin
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Gerd Klöck
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences, 28199, Bremen, Germany
| |
Collapse
|
3
|
Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, de Oliveira LH, Wan Azelee NI, Meili L, Rangasamy G. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. CHEMOSPHERE 2023; 319:138003. [PMID: 36731678 DOI: 10.1016/j.chemosphere.2023.138003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply.
Collapse
Affiliation(s)
- Hilman Ibnu Mahdi
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.
| | - Nurfadhila Nasya Ramlee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - José Leandro da Silva Duarte
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, 57072-900, Brazil
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| | - Faisal Amir
- Department of Mechanical Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan; Department of Mechanical Engineering, Universitas Mercu Buana (UMB), Jl. Raya, RT.4/RW.1, Meruya Sel., Kec. Kembangan, Jakarta, Daerah Khusus Ibukota Jakarta, 11650, Indonesia
| | - Leonardo Hadlich de Oliveira
- Laboratory of Adsorption and Ion Exchange (LATI), Chemical Engineering Department (DEQ), State University of Maringá, Maringá (UEM), 5790 Colombo Avenue, Zone 7, 87020-900, Maringá, PR, Brazil
| | - Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), UTM Skudai, 81310, Skudai Johor Bahru, Johor, Malaysia.
| | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas, Campus A. C. Simões, Lourival Melo Mota Avenue, Tabuleiro Dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
4
|
Ideris F, Zamri MFMA, Shamsuddin AH, Nomanbhay S, Kusumo F, Fattah IMR, Mahlia TMI. Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production. ENERGIES 2022; 15:7190. [DOI: 10.3390/en15197190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and the depletion of fossil fuels have spurred many efforts in the quest for finding renewable, alternative sources of fuels, such as biodiesel. Due to its auxiliary functions in areas such as carbon dioxide sequestration and wastewater treatment, the potential of microalgae as a feedstock for biodiesel production has attracted a lot of attention from researchers all over the world. Major improvements have been made from the upstream to the downstream aspects related to microalgae processing. One of the main concerns is the high cost associated with the production of biodiesel from microalgae, which includes drying of the biomass and the subsequent lipid extraction. These two processes can be circumvented by applying direct or in situ transesterification of the wet microalgae biomass, hence substantially reducing the cost. In situ transesterification is considered as a significant improvement to commercially produce biodiesel from microalgae. This review covers the methods used to extract lipids from microalgae and various in situ transesterification methods, focusing on recent developments related to the process. Nevertheless, more studies need to be conducted to further enhance the discussed in situ transesterification methods before implementing them on a commercial scale.
Collapse
|
5
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. Int J Biol Macromol 2022; 199:51-60. [PMID: 34973984 DOI: 10.1016/j.ijbiomac.2021.12.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
The coimmobilization of lipases from Rhizomucor miehei (RML) and Candida antarctica (CALB) has been intended using agarose beads activated with divinyl sulfone. CALB could be immobilized on this support, while RML was not. However, RML was ionically exchanged on this support blocked with ethylendiamine. Therefore, both enzymes could be coimmobilized on the same particle, CALB covalently using the vinyl sulfone groups, and RML via anionic exchange on the aminated blocked support. However, immobilized RML was far less stable than immobilized CALB. To avoid the discarding of CALB (that maintained 90% of the initial activity after RML inactivation), a strategy was developed. Inactivated RML was desorbed from the support using ammonium sulfate and 1% Triton X-100 at pH 7.0. That way, 5 cycles of RML thermal inactivation, discharge of the inactivated enzyme and re-immobilization of a fresh sample of RML could be performed. In the last cycle, immobilized CALB activity was still over 90% of the initial one. Thus, the strategy permits that enzymes can be coimmobilized on vinyl sulfone supports even if one of them cannot be immobilized on it, and also permits the reuse of the most stable enzyme (if it is irreversibly attached to the support).
Collapse
|
8
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. Int J Biol Macromol 2022; 206:580-590. [PMID: 35218810 DOI: 10.1016/j.ijbiomac.2022.02.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipases from Candida rugosa (CRL) and Rhizomucor miehei (RML) have been coimmobilized on octyl and octyl-Asp agarose beads. CALB was much more stable than CRL, that was significantly more stable than RML. This forces the user to discard immobilized CALB and CRL when only RML has been inactivated, or immobilized CALB when CRL have been inactivated. To solve this problem, a new strategy has been proposed using three different immobilization protocols. CALB was covalently immobilized on octyl-vinyl sulfone agarose and blocked with Asp. Then, CRL was immobilized via interfacial activation. After coating both immobilized enzymes with polyethylenimine, RML could be immobilized via ion exchange. That way, by incubating in ammonium sulfate solutions, inactivated RML could be released enabling the reuse of coimmobilized CRL and CALB to build a new combi-lipase. Incubating in triton and ammonium sulfate solutions, it was possible to release inactivated CRL and RML, enabling the reuse of immobilized CALB when CRL was inactivated. These cycles could be repeated for 3 full cycles, maintaining the activity of the active and immobilized enzymes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
10
|
Abstract
The effective transesterification process to produce fatty acid methyl esters (FAME) requires the use of low-cost, less corrosive, environmentally friendly and effective catalysts. Currently, worldwide biodiesel production revolves around the use of alkaline and acidic catalysts employed in heterogeneous and homogeneous phases. Homogeneous catalysts (soluble catalysts) for FAME production have been widespread for a while, but solid catalysts (heterogeneous catalysts) are a newer development for FAME production. The rate of reaction is much increased when homogeneous basic catalysts are used, but the main drawback is the cost of the process which arises due to the separation of catalysts from the reaction media after product formation. A promising field for catalytic biodiesel production is the use of heteropoly acids (HPAs) and polyoxometalate compounds. The flexibility of their structures and super acidic properties can be enhanced by incorporation of polyoxometalate anions into the complex proton acids. This pseudo liquid phase makes it possible for nearly all mobile protons to take part in the catalysis process. Carbonaceous materials which are obtained after sulfonation show promising catalytic activity towards the transesterification process. Another promising heterogeneous acid catalyst used for FAME production is vanadium phosphate. Furthermore, biocatalysts are receiving attention for large-scale FAME production in which lipase is the most common one used successfully This review critically describes the most important homogeneous and heterogeneous catalysts used in the current FAME production, with future directions for their use.
Collapse
|
11
|
Li Z, Chen H, Fang Y, Ma Y, Chen H, Yang B, Wang Y. A Highly Efficient Three-Liquid-Phase-Based Enzymatic One-Pot Multistep Reaction System with Recoverable Enzymes for the Synthesis of Biodiesel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5481-5490. [PMID: 33955745 DOI: 10.1021/acs.jafc.0c07448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-liquid-phase system (TLPS) was developed and used as a novel enzymatic one-pot multistep reaction (EOMR) system. In this system, lipase and phospholipase were enriched in a single liquid phase with a high recovery (ca. 98%) and then used for the simultaneous catalysis of mutually inhibiting and interfering reactions (hydrolysis of phospholipids and glyceride in crude oil). A novel emulsion containing the two dispersed droplets (W2/O/W2 and W1/W2 emulsion structures) could be the key reason for this phenomenon because the emulsion system not only provided a new catalytic interface but also relieved the product inhibition. As a result, the content of free fatty acid (main hydrolysate of the glyceride) and the removal of phospholipid from the crude oil could be increased to 96 and 95%, respectively, within 1 h. The product obtained from the EOMR was directly used in the production of biodiesel via enzymatic esterification, and the content of fatty acid methanol ester could be increased to 93% within 2 h. Furthermore, the enzymes in the middle phase could also be reused, at least for eight rounds without significant loss in catalytic efficiency. Therefore, the TLPS could be considered as an ideal catalytic platform for the EOMR.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yinglin Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huayong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
12
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020. [DOI: 10.3390/catal10101207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lipases A and B from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TLL) or Rhizomucor miehei (RML), and the commercial and artificial phospholipase Lecitase ultra (LEU) may be co-immobilized on octyl agarose beads. However, LEU and RML became almost fully inactivated under conditions where CALA, CALB and TLL retained full activity. This means that, to have a five components co-immobilized combi-lipase, we should discard 3 fully active and immobilized enzymes when the other two enzymes are inactivated. To solve this situation, CALA, CALB and TLL have been co-immobilized on octyl-vinyl sulfone agarose beads, coated with polyethylenimine (PEI) and the least stable enzymes, RML and LEU have been co-immobilized over these immobilized enzymes. The coating with PEI is even favorable for the activity of the immobilized enzymes. It was checked that RML and LEU could be released from the enzyme-PEI coated biocatalyst, although this also produced some release of the PEI. That way, a protocol was developed to co-immobilize the five enzymes, in a way that the most stable could be reused after the inactivation of the least stable ones. After RML and LEU inactivation, the combi-biocatalysts were incubated in 0.5 M of ammonium sulfate to release the inactivated enzymes, incubated again with PEI and a new RML and LEU batch could be immobilized, maintaining the activity of the three most stable enzymes for at least five cycles of incubation at pH 7.0 and 60 °C for 3 h, incubation on ammonium sulfate, incubation in PEI and co-immobilization of new enzymes. The effect of the order of co-immobilization of the different enzymes on the co-immobilized biocatalyst activity was also investigated using different substrates, finding that when the most active enzyme versus one substrate was immobilized first (nearer to the surface of the particle), the activity was higher than when this enzyme was co-immobilized last (nearer to the particle core).
Collapse
|
14
|
Rocha TG, de L. Gomes PH, de Souza MCM, Monteiro RRC, dos Santos JCS. Lipase Cocktail for Optimized Biodiesel Production of Free Fatty Acids from Residual Chicken Oil. Catal Letters 2020. [DOI: 10.1007/s10562-020-03367-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Alabdalall AH, ALanazi NA, A Aldakeel S, AbdulAzeez S, Borgio JF. Molecular, physiological, and biochemical characterization of extracellular lipase production by Aspergillus niger using submerged fermentation. PeerJ 2020; 8:e9425. [PMID: 32704444 PMCID: PMC7350912 DOI: 10.7717/peerj.9425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
Background Extracellular production of fungal lipases especially the lipases obtained from the Aspergilli has gained immense interest in recent years due to its diverse biotechnological applications. In this study, we focused on determining the fermentation parameters required for the optimal lipase production. Methods A total of 256 fungal isolates were obtained from oil seeds. From each genus, one isolate was selected to evaluate lipase production using phenol red and tributyrin plate assays. Lipase activity was estimated using the spectrophotometric pNPP hydrolysis assay. The highest lipase producer isolates were identified using 18S ribosomal RNA gene sequencing. The genetic variability was determined by random amplified polymorphic DNA (RAPD) analysis and the dendrogram was constructed using the unweighted pair group method with arithmetic averages method. The isolates were examined in a submerged fermentation culture (Smf) to measure the effect of temperature, pH, incubation time, carbon source, nitrogen source, inoculum volume, and lipid source on lipase production. Results Eleven isolates belonging to the genus Aspergillus were analyzed for lipase production where they were found to be the highest lipase producers among various fungal genera. All the tested isolates were identified as A. niger using 18s rRNA sequencing. Genetic diversity was evaluated among all of the studied A. niger isolates using RAPD primers. The RAPD primers were used to amplify 285 loci, of which five were polymorphic (1.75%) and seven were monomorphic (2.45%). Thus, a high level of genetic diversity was observed among all isolates. The tributyrin test and the lipase activity assay identified five strains of A. niger as high lipase producers, and their optimal enzyme activities were 709.74, 532.54, 735.64, 794.62, and 787.69 U/ml. The optimal conditions for lipase production were as follows: 40 °C, pH 7.5, 1% fructose as the carbon source, 1% yeast extract as the nitrogen source, 2% palm oil, 2.5 × 107 spores/ml suspension, and 3 days of incubation. Conclusions The current study provides a comprehensive characterization of the optimal conditions, which are essential to enhance lipase production in five A. niger isolates.
Collapse
Affiliation(s)
- Amira Hassan Alabdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - Norah Ayad ALanazi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - Sumayh A Aldakeel
- Department of Genetic Research, Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - J Francis Borgio
- Department of Genetic Research, Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| |
Collapse
|
16
|
Tan X, Zhu S, Show PL, Qi H, Ho SH. Sorption of ionized dyes on high-salinity microalgal residue derived biochar: Electron acceptor-donor and metal-organic bridging mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122435. [PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/29/2020] [Indexed: 05/18/2023]
Abstract
Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
Collapse
Affiliation(s)
- Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Dalian SEM Bio-Engineering Technology Co., Ltd., Dalian, 116620, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Haiqun Qi
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
17
|
Immobilized Biocatalysts of Eversa® Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production. Catalysts 2020. [DOI: 10.3390/catal10070738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eversa® Transform (ET), and the lipase from Thermomyces lanuginosus (TLL), liquid commercial lipases formulations, have been immobilized on octyl agarose beads and their stabilities were compared. Immobilized and free ET forms were more thermostable than TLL formulations at pH 5.0, 7.0, and 9.0, and the ET immobilized form was more stable in the presence of 90% methanol or dioxane at 25 °C and pH 7. Specific activity versus p-nitrophenyl butyrate was higher for ET than for TLL. However, after immobilization the differences almost disappeared because TLL was very hyperactivated (2.5-fold) and ET increased the activity only by 1.6 times. The enzymes were also immobilized in octadecyl methacrylate beads. In both cases, the loading was around 20 mg/g. In this instance, activity was similar for immobilized TLL and ET using triacetin, while the activity of immobilized ET was lower using (S)-methyl mandelate. When the immobilized enzymes were used to produce biodiesel from sunflower oil and methanol in tert-butanol medium, their performance was fairly similar.
Collapse
|
18
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
19
|
Concentration of Lipase from Aspergillus oryzae Expressing Fusarium heterosporum by Nanofiltration to Enhance Transesterification. Processes (Basel) 2020. [DOI: 10.3390/pr8040450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanofiltration membrane separation is an energy-saving technology that was used in this study to concentrate extracellular lipase and increase its total activity for biodiesel production. Lipase was produced by recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (FHL). A sulfonated polyethersulfone nanofiltration membrane, NTR-7410, with a molecular weight cut-off of 3 kDa was used for the separation, because recombinant lipase has a molecular weight of approximately 20 kDa, which differs from commercial lipase at around 30 kDa for CalleraTM Trans L (CalT). After concentration via nanofiltration, recombinant lipase achieved a 96.8% yield of fatty acid methyl ester (FAME) from unrefined palm oil, compared to 50.2% for CalT in 24 h. Meanwhile, the initial lipase activity (32.6 U/mL) of recombinant lipase was similar to that of CalT. The composition of FAME produced from recombinant concentrated lipase, i.e., C14:1, C16:0, C18:0, C18:1 cis, and C18:2 cis were 0.79%, 34.46%, 5.41%, 45.90%, and 12.46%, respectively, after transesterification. This FAME composition, even after being subjected to nanofiltration, was not significantly different from that produced from CalT. This study reveals the applicability of a simple and scalable nanofiltration membrane technology that can enhance enzymatic biodiesel production.
Collapse
|
20
|
Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. Int J Biol Macromol 2020; 145:856-864. [DOI: 10.1016/j.ijbiomac.2019.10.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
|
21
|
C. Wancura JH, Tres MV, Jahn SL, Oliveira JV. Lipases in liquid formulation for biodiesel production: Current status and challenges. Biotechnol Appl Biochem 2019; 67:648-667. [DOI: 10.1002/bab.1835] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
Affiliation(s)
- João H. C. Wancura
- Department of Chemical Engineering Federal University of Santa Maria Santa Maria RS Brazil
| | - Marcus V. Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE) Federal University of Santa Maria Cachoeira do Sul RS Brazil
| | - Sérgio L. Jahn
- Department of Chemical Engineering Federal University of Santa Maria Santa Maria RS Brazil
| | - José Vladimir Oliveira
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC Brazil
| |
Collapse
|
22
|
Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts 2019. [DOI: 10.3390/catal9050487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coimmobilization of lipases may be interesting in many uses, but this means that the stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) (a phospholipase) and the lipases from Rhizomucor miehei (RML) and from Pseudomonas fluorescens (PFL) were immobilized on octyl agarose, and their stabilities were studied under a broad range of conditions. Immobilized PFL was found to be the most stable enzyme under all condition ranges studied. Furthermore, in many cases it maintained full activity, while the other enzymes lost more than 50% of their initial activity. To coimmobilize these enzymes without discarding fully active PFL when LU or RML had been inactivated, PFL was covalently immobilized on glyoxyl-agarose beads. After biocatalysts reduction, the other enzyme was coimmobilized just by interfacial activation. After checking that glyoxyl-octyl-PFL was stable in 4% Triton X-100, the biocatalysts of PFL coimmobilized with LU or RML were submitted to inactivation under different conditions. Then, the inactivated least stable coimmobilized enzyme was desorbed (using 4% detergent) and a new enzyme reloading (using in some instances RML and in some others employing LU) was performed. The initial activity of immobilized PFL was maintained intact for several of these cycles. This shows the great potential of this lipase coimmobilization strategy.
Collapse
|
23
|
Skliar V, Krusir G, Zakharchuk V, Kovalenko I, Shpyrko T. INVESTIGATION OF THE FAT FRACTION ENZYMATIC HYDROLYSIS OF THE WASTE FROM PRODUCTION OF HYDROGENATED FAT BY THE LIPASE RHIZOPUS JAPONICUS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i1.1332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
. In the article the conditions of enzymatic hydrolysis of fat fraction of waste from production of hydrogenated fat by the lipase Rhizopus japonicus are considered, namely, the influence of pH of the medium (pH-optimum, pH-stability) and temperature (thermal optimum, thermal stability). The scope of applications of lipases in various branches of the national economy, including for utilization of numerous fatty waste and by-products of oil and fat industry, is disclosed. The main reasons of biotechnological potential of microbial lipases are considered. Objects of research were the lipase Rhizopus japonicus and waste from the demetallization stage of the hydrogenated fat production. Detected, that the optimum pH value for Rhizopus japonicus lipase is 7.0, reducing the pH of the medium from the optimum to pH 6.0 is accompanied by a decrease in activity by 30%, and an increase from 7.0 to 9.0 – decrease by 20%. The maximum activity of the enzyme is observed in the region of physiological values of the temperature. It has been established that the lipase optimal temperature is 40°C. The results of the Rhizopus japonicus lipase stability study showed that incubation of the enzyme at pH 2.5 resulted in a complete loss of lipolytic activity after 30 minutes, and at alkaline pH, the enzyme was more stable. Incubation of lipase Rhizopus japonicus for 30 min at pH 9.0 leads to loss of lipolytic activity by 25% of the maximum, and total loss of activity occurs after 2.5 h. The study of pH-stability of Rhizopus japonicus lipase at an optimal pH of 7 showed that after 60 min of incubation, the enzyme lost 15% of the lipolitical activity, and after 60 min – 50%. Complete loss of Rhizopus japonicus lipase activity at pH 7.0 takes place after 150 minutes of incubation. The results of the study of thermal stability of lipase showed that at a temperature of 40°C and 60°C, the lipase activity remained rather stable for 50 minutes and completely lost after 150 minutes of incubation. At 80°C and 100°C, lipase activity was lost after 40 minutes and 50 minutes of incubation, respectively. The results of the study indicate the prospect of enzymatic hydrolysis of fat fraction of waste by Rhizopus japonicus lipase. The results obtained should be used to improve the processing technology of waste oil and fat industry food and processing industries.
Collapse
|
24
|
He Y, Wang X, Wei H, Zhang J, Chen B, Chen F. Direct enzymatic ethanolysis of potential Nannochloropsis biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:78. [PMID: 30992715 PMCID: PMC6449970 DOI: 10.1186/s13068-019-1418-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/27/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Marine microalga Nannochloropsis is a promising source for the production of renewable and sustainable biodiesel in replacement of depleting petroleum. Other than biodiesel, Nannochloropsis is a green and potential resource for the commercial production of nutraceutical eicosapentaenoic acid (EPA, C20:5). In recent studies, low-value biodiesel can be achieved by transesterification of Nannochloropsis biomass. However, it is undoubtedly wasteful to produce microalgal biodiesel containing EPA from nutritional and economical aspects. A new strategy was addressed and exploited to produce low-value bulky biodiesel along with EPA enrichment via enzymatic ethanolysis of Nannochloropsis biomass with a specific lipase. RESULTS Cellulase pretreatment on Nannochloropsis sp. biomass significantly improved the biodiesel conversion by direct ethanolysis with five enzymes from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TL), Rhizomucor miehei (RM), and Aspergillus oryzae (PLA). Among these five biocatalysts, CALA was the best suitable enzyme to yield high biodiesel conversion and effectively enrich EPA. After optimization, the maximum biodiesel conversion (46.53-48.57%) was attained by CALA at 8:1 ethanol/biomass ratio (v/w) in 10-15% water content with 10% lipase weight at 35 °C for 72 h. Meanwhile, EPA (60.81%) was highly enriched in microalgae NPLs (neutral lipids and polar lipids), increasing original EPA levels by 1.51-fold. Moreover, this process was re-evaluated with two Nannochloropsis species (IMET1 and Salina 537). Under the optimized conditions, the biodiesel conversions of IMET1 and Salina 537 by CALA were 63.41% and 54.33%, respectively. EPA contents of microalgal NPLs were 50.06% for IMET1 and 53.73% for Salina 537. CONCLUSION CALA was the potential biocatalyst to discriminate against EPA in the ethanolysis of Nannochloropsis biomass. The biodiesel conversion and EPA enrich efficiency of CALA were greatly dependent on lipidic class and fatty acid compositions of Nannochloropsis biomass. CALA-catalyzed ethanolysis with Nannochloropsis biomass was a promising approach for co-production of low-value biodiesel and high-value microalgae products rich in EPA.
Collapse
Affiliation(s)
- Yongjin He
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People’s Republic of China, Beijing, 100081 China
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Xiaofei Wang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Hehong Wei
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Jianzhi Zhang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Feng Chen
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000 China
| |
Collapse
|
25
|
He Y, Wu T, Wang X, Chen B, Chen F. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. BIORESOURCE TECHNOLOGY 2018; 268:583-591. [PMID: 30138870 DOI: 10.1016/j.biortech.2018.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 05/13/2023]
Abstract
In this study, a novel two-step enzymatic process was firstly established to produce microalgae biodiesel using wet Chlorella biomass. In the first hydrolysis step, to reduce energy consumption and effectively disrupt microalgal cell wall, among cellulase, hemicellulase, papain, lysozyme and pectinase, the highest hydrolysis efficiency (67.52%) was obtained by cellulase at pH 5.0 with enzyme dosage of 200 U/g dry biomass at 40 °C for 12 h. In the second transesterification step, compared with liquid CAL-A/B from Candida antarctica and PLA from Aspergillus oryzae, liquid lipase TL from Thermomyces lanuginosus achieved the highest biodiesel conversion at 81.15:1 (v/w) ethanol/g TFAs ratio in 78-83% water content with 100 PLU/g TFAs lipase loading at 25 °C for 48 h. Moreover, similar results were obtained with three Chlorella species by this process. Overall, this two-step enzymatic process was a green, low-energy and efficient method for cost-effective biodiesel production using wet microalgal biomass.
Collapse
Affiliation(s)
- Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaofei Wang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Law SQK, Halim R, Scales PJ, Martin GJO. Conversion and recovery of saponifiable lipids from microalgae using a nonpolar solvent via lipase-assisted extraction. BIORESOURCE TECHNOLOGY 2018; 260:338-347. [PMID: 29649726 DOI: 10.1016/j.biortech.2018.03.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 05/13/2023]
Abstract
A single-step method for transesterifying and recovering lipids in concentrated slurries (ca 20% w/w solids) of ruptured microalgae is presented. A soluble Rhizomucor miehei lipase (RML) was used to directly transesterify the lipids in the marine microalgae Nannochloropsis salina. This allowed both triglycerides (TAG) and polar saponifiable lipids to be recovered as fatty acid methyl esters (FAME) using a nonpolar solvent (hexane). Up to 90 wt% of the total saponifiable lipids (SL) were converted to FAME within 24 h, approximately 75% of which was recovered in the hexane by centrifugation. Two pathways for the conversion and recovery of polar lipids were identified. The water in the slurry buffered against potential lipase inhibition by methanol, but necessitated a high methanol dose for maximal FAME conversion. Nonetheless the method enables the recovery of polar lipids as FAME while avoiding the need for both drying of the biomass and a downstream transesterification step.
Collapse
Affiliation(s)
- Sam Q K Law
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ronald Halim
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Scales
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
27
|
How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol 2018; 50:57-64. [DOI: 10.1016/j.copbio.2017.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
|
28
|
Pitzalis F, Carucci C, Naseri M, Fotouhi L, Magner E, Salis A. Lipase Encapsulation onto ZIF-8: A Comparison between Biocatalysts Obtained at Low and High Zinc/2-Methylimidazole Molar Ratio in Aqueous Medium. ChemCatChem 2018. [DOI: 10.1002/cctc.201701984] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Federica Pitzalis
- Department of Chemical and Geological Sciences; University of Cagliari; Cittadella Universitaria, SS 554 bivio Sestu 09042 Monserrato (CA) Italy
| | - Cristina Carucci
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre and Bernal Institute; University of Limerick; Limerick V94 T9PX Ireland
| | - Maryam Naseri
- Department of Chemical and Geological Sciences; University of Cagliari; Cittadella Universitaria, SS 554 bivio Sestu 09042 Monserrato (CA) Italy
- Department of Chemistry; Alzahra University; Tehran Iran
| | - Lida Fotouhi
- Department of Chemistry; Alzahra University; Tehran Iran
| | - Edmond Magner
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre and Bernal Institute; University of Limerick; Limerick V94 T9PX Ireland
| | - Andrea Salis
- Department of Chemical and Geological Sciences; University of Cagliari; Cittadella Universitaria, SS 554 bivio Sestu 09042 Monserrato (CA) Italy
| |
Collapse
|
29
|
Liu Y, Huang L, Zheng D, Fu Y, Shan M, Xu Z, Ma J, Lu F. Development of a Pichia pastoris whole-cell biocatalyst with overexpression of mutant lipase I PCLG47I from Penicillium cyclopium for biodiesel production. RSC Adv 2018; 8:26161-26168. [PMID: 35541942 PMCID: PMC9082943 DOI: 10.1039/c8ra04462g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
Biodiesel is efficiently produced by a lipase whole-cell biocatalyst with high activity and thermostability at low temperature.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| | - Dong Zheng
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- The College of Biotechnology
| | - Mengying Shan
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Zehua Xu
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Jieying Ma
- Tianjin Key Laboratory of Industrial Microbiology
- Tianjin 300457
- P. R. China
- The College of Biotechnology
- Tianjin University of Science and Technology
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- P. R. China
- Tianjin Key Laboratory of Industrial Microbiology
| |
Collapse
|
30
|
Amoah J, Ho SH, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A. Conversion of Chlamydomonas sp. JSC4 lipids to biodiesel using Fusarium heterosporum lipase-expressing Aspergillus oryzae whole-cell as biocatalyst. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Andrade TA, Errico M, Christensen KV. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production. BIORESOURCE TECHNOLOGY 2017; 243:366-374. [PMID: 28683390 DOI: 10.1016/j.biortech.2017.06.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content.
Collapse
Affiliation(s)
- Thalles A Andrade
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Massimiliano Errico
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Knud V Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
32
|
He Y, Li J, Kodali S, Balle T, Chen B, Guo Z. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization. BIORESOURCE TECHNOLOGY 2017; 224:445-456. [PMID: 27839863 DOI: 10.1016/j.biortech.2016.10.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 05/13/2023]
Abstract
This work examined catalytic specificity and fatty acid selectivity of five liquid lipases C. antarctica lipase A and B (CAL-A/B), and lipase TL (T. lanuginosus), Eversa Transfrom and NS in ethanolysis of fish oil with the aim to concentrate n-3 PUFAs into monoacylglycerols (MAGs) products. Lipase TL, Eversa Transform & NS entail a much faster reaction and produce higher MAGs yield (>30%); whereas CAL-A obtains the highest concentration of n-3 PUFAs/DHA/EPA into MAGs products (88.30%); followed by lipase NS (81.02%). 13C NMR analysis indicates that CAL-B and lipase TL are sn-1,3 specific; but CAL-A and lipase Eversa Transform are non-regiospecific or weak sn-2 specific; which plausibly explains high enrichment effect of the latter two lipases. All liquid lipases are observed reusable for a certain times (lipase Eversa Transform up to 12 times), demonstrating their competitive advantage over immobilized form for industrial application because of their higher activity and cheaper operation cost.
Collapse
Affiliation(s)
- Yongjin He
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark; College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jingbo Li
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Sitharam Kodali
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas Balle
- Novozymes A/S DK, Krogshojvej 36, 2880 Bagsvaerd, Denmark
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Zheng Guo
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| |
Collapse
|
33
|
Chen G, Du H, Jiang B, Miao M, Feng B. Activity of Candida rugosa lipase for synthesis of hexyl octoate under high hydrostatic pressure and the mechanism of this reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|