1
|
Dong Y, Li J, Guo Z, Han L, Zhao J, Wu X, Chen X. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176285. [PMID: 39288875 DOI: 10.1016/j.scitotenv.2024.176285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Collapse
Affiliation(s)
- Yibo Dong
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiaohong Li
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China
| | - Zhenxiang Guo
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lei Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Zhao
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaomao Wu
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China; Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xiangsheng Chen
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Yao Z, Zhu Y, Wu Q, Xu Y. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Crit Rev Food Sci Nutr 2022; 64:4995-5015. [PMID: 36412251 DOI: 10.1080/10408398.2022.2147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneously fermented foods are consumed and appreciated for thousands of years although they are usually produced with fluctuated productivity and quality, potentially threatening both food safety and food security. To guarantee consistent fermentation productivity and quality, it is essential to control the complex microbiota, the most crucial factor in food fermentations. The prerequisite for the control is to comprehensively understand the structure and function of the microbiota. How to quantify the actual microbiota is of paramount importance. Among various microbial quantitative methods evolved, quantitative microbiome profiling, namely to quantify all microbial taxa by absolute abundance, is the best method to understand the complex microbiota, although it is still at its pioneering stage for food fermentations. Here, we provide an overview of microbial quantitative methods, including the development from conventional methods to the advanced quantitative microbiome profiling, and the application examples of these methods. Moreover, we address potential challenges and perspectives of quantitative microbiome profiling methods, as well as future research needs for the ultimate goal of rational and optimal control of microbiota in spontaneous food fermentations. Our review can serve as reference for the traditional food fermentation sector for stable fermentation productivity, quality and safety.
Collapse
Affiliation(s)
- Zhihao Yao
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
A rare ω-8 fatty acid, cis-8,4,11-docosatrienoic acid rich microalgal strain isolated from a salt lake in Tibet Plateau. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Yang L, Zhu L, Chen X, Meng S, Xie Y, Sheng M, Cao G. The role of nitrification inhibitors on the removal of antibiotics in livestock wastewater by aerobic biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150309. [PMID: 34562755 DOI: 10.1016/j.scitotenv.2021.150309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/21/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
An optimized aerobic-based treatment method that effectively removes antibiotics and retains ammonia is urgently needed for the field-return-based management of livestock wastewater. Allylthiourea (ATU, used for BOD determination), and 2-chloro-6-trichloromethylpyridine (TCMP) and 3,4-dimethylpyrazole phosphate (DMPP) (commonly used as nitrogen fertilizer synergists) were separately added to sequencing batch reactors (SBRs), in order to investigate their effect on nitrification inhibition and pollutant removal for livestock wastewater treatment. The laboratory test shows that the daily addition of 43.8 mg/L ATU or 17.5 mg/L TCMP to SBRs effectively inhibited nitrification. Nitrification inhibition by DMPP seemed fluctuated and insufficient even various dosing strategies were attempted. The removal efficiency of antibiotics was reduced from 95% to 85% with the addition of ATU, while not significantly influenced by TCMP and DMPP. The COD removal efficiency was reduced by only 6%-10% with the addition of three inhibitors. The pilot study shows that nitrification inhibition efficiency reached 89% with the daily addition of 11.5 mg/L TCMP. The total removal efficiency of antibiotics remained over 93%. The laboratory and pilot studies consistently demonstrate that TCMP played a satisfactory nitrification inhibition role and had a negligible effect on antibiotic removal. The current work provides a novel insight for the proper field-return-based management of livestock wastewater, which achieves the dual goals of reducing the risk of antibiotic exposure and preserving its nutrient value as fertilizers.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lin Zhu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Yingqi Xie
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mei Sheng
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Guomin Cao
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
5
|
Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz M. Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. ENVIRONMENTAL MICROBIOME 2022; 17:3. [PMID: 35033203 PMCID: PMC8760730 DOI: 10.1186/s40793-022-00398-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL). CONCLUSIONS Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Paul Jankowski
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jaydon Gan
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Michaela McKennitt
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
- Institute of the Environment, University of Ottawa, Ottawa, ON, Canada
| | - Audrey Garcia
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Miguel Uyaguari-Diaz
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
6
|
Liao K, Hu H, Ma S, Ren H. Effect of microbial activity and microbial community structure on the formation of dissolved organic nitrogen (DON) and bioavailable DON driven by low temperatures. WATER RESEARCH 2019; 159:397-405. [PMID: 31121407 DOI: 10.1016/j.watres.2019.04.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Dissolved organic nitrogen (DON) formed by microbial metabolism in wastewater treatment processes adversely impacts wastewater reuse and receiving waters quality, and microbial metabolism is greatly influenced by temperatures. However, little is known about the effect of microorganisms on DON and bioavailable DON (ABDON) formation under low temperatures. In this study, six reactors were operated at low (8 °C and 15 °C) and room (25 °C) temperatures to evaluate the relationship between microbial activity, microbial communities, and DON and ABDON. Results showed that DON and ABDON concentrations significantly increased at low temperatures (p < 0.05, t-test). DON formation was significantly correlated to microbial activity only, with adenosine triphosphate (negative, r = -0.64) and polysaccharide (positive, r = 0.61) as key indicators; however, ABDON formation was influenced by both microbial activity (polysaccharide > triphenyltetrazolium chloride-dehydrogenases > adenosine triphosphate) and microbial community structure. Short-term tests using the biomass from six reactors were performed at room temperature to further validate the relationship. The distinct differences between these results provide a basis for different strategies on reducing effluent DON and ABDON under low temperatures.
Collapse
Affiliation(s)
- Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
7
|
Ma SJ, Ding LL, Hu HD, Ma HJ, Xu K, Huang H, Geng JJ, Ren HQ. Cell membrane characteristics and microbial population distribution of MBBR and IFAS with different dissolved oxygen concentration. BIORESOURCE TECHNOLOGY 2018; 265:17-24. [PMID: 29864733 DOI: 10.1016/j.biortech.2018.03.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
This paper investigated the influences of different dissolved oxygen (DO) concentration (0.71-1.32, 2.13-3.02 and 4.31-5.16 mg/L) on cell membrane characteristics and microbial population distribution of moving biofilm reactors. Two representative reactors, i.e., moving bed biofilm reactors and integrated fixed-film activated sludge were operated. Results indicated that both DO concentration of 0.71-1.32 mg/L and 4.31-5.16 mg/L could increase membrane lipid mobile fraction (49.4%-67.4%) of the microbes, however, through prompting the synthesis of branched fatty acids and unsaturated fatty acids, respectively. For the biofilms, the abundance of Bacteroidetes decreased and Actinobacteria increased with the increase of DO levels. The lowest EfOM content and the highest microbial diversities (1.14-1.52) was observed at DO of 2.13-3.02 mg/L. Redundancy analysis showed that changes of DO levels could alter cell membrane properties and bacterial community structures, and subsequently significantly influenced effluent organic matter composition of moving biofilm reactors.
Collapse
Affiliation(s)
- Si-Jia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hai-Dong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hai-Jun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jin-Ju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
8
|
Dominance of the genus Polaromonas in the microbial ecology of an Intermittently Aerated Sequencing Batch Reactor (IASBR) treating dairy processing wastewater under varying aeration rates. J DAIRY RES 2018; 85:388-390. [DOI: 10.1017/s0022029918000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this Research Communication we investigate potential correlations between key bacterial groups and nutrient removal efficiency in an Intermittently Aerated Sequencing Batch Reactor (IASBR) treating synthetic dairy processing wastewater. Reactor aeration rates of 0·6 and 0·4 litre per minute (LPM) were applied to an 8 l laboratory scale system and the relative impacts on IASBR microbial community structure and orthophosphate (PO4-P) and ammonium (NH4-N) removal efficiencies compared. Aeration at 0·6 LPM over several sludge retention times (SRTs) resulted in approximately 92% removal efficiencies for both PO4-P and NH4-N. Biomass samples subjected to next-generation sequencing (NGS), 16S rRNA profiling revealed a concomitant enrichment of Polaromonas under 0·6 LPM conditions, up to ~50% relative abundance within the reactor biomass. The subsequent shift in reactor aeration to 0·4 LPM, over a period of 3 SRTs, resulted in markedly reduced nutrient removal efficiencies for PO4-P (50%) and NH4-N (45%). An 85·7% reduction in the genus level relative abundance of Polaromonas was observed under 0·4 LPM aeration conditions over the same period.
Collapse
|
9
|
He S, Ding L, Pan Y, Hu H, Ye L, Ren H. Nitrogen loading effects on nitrification and denitrification with functional gene quantity/transcription analysis in biochar packed reactors at 5 °C. Sci Rep 2018; 8:9844. [PMID: 29959416 PMCID: PMC6026168 DOI: 10.1038/s41598-018-28305-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022] Open
Abstract
This study investigated the nitrogen transformation rates of different nitrogen-loading (20, 30, and 50 mg TN/L) biochar packed reactors (C:N:P = 100:5:1) within 125 days at 5 °C. The results showed that high nitrogen loading resulted in an NH4+ (TN) removal efficiency decline from 98% (57%) to 83% (29%), with biochar yielding a higher NH4+, TN and DON removal rate than conventional activated sludge. Moreover, all biochar packed reactors realized a quick start-up by dropping in temperature stage by stage, and the effluent dissolved organic nitrogen (DON) concentrations of R20, R30, and R50 were 0.44 ± 0.18, 0.85 ± 0.35, and 0.66 ± 0.26 mg/L, respectively. The nirS/amoA, nxrA/amoA, and amoA/(narG + napA) were deemed to be the markers of ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR), respectively. Compared with functional gene quantity data, transcription data (mRNA) introduced into stepwise regression analyses agreed well with nitrogen transformation rates. High nitrogen loading also resulted in the cell viability decreased in R50. Nitrogen loadings and operation time both led to a significant variation in cell membrane composition, and unsaturated fatty acids (UFAs) significantly increased in R30 (46.49%) and R50 (36.34%). High-throughput sequencing revealed that nitrogen loadings increased the abundance of nitrifying bacteria (e.g., Nitrospira) and reduced the abundance of denitrifying bacteria (e.g., Nakamurella, Thermomonas, and Zoogloea) through linear discriminant analysis (LDA).
Collapse
Affiliation(s)
- Su He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
10
|
Short-Term Effects of Tourmaline on Nitrogen Removals and Microbial Communities in a Sequencing Batch Reactor at Low Temperatures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061280. [PMID: 29914192 PMCID: PMC6024927 DOI: 10.3390/ijerph15061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/30/2023]
Abstract
Tourmaline is a ring borosilicate with unique pyro-electricity and piezoelectricity values. Non-gem tourmaline is usually used as an environmental material. The short-term effects of ultrafine tourmaline particles on nitrogen removal performs microbial population dynamics. Key functional species in a sequencing batch reactor were investigated at 9 ± 1 °C. The investigation results showed that 1 g·L−1 ultrafine tourmaline particles could resist the effect of temperature shock on the metabolism of NH4+-N and were beneficial to the restoration of the metabolism capacity of NH4+-N. 1 g·L−1 ultrafine tourmaline particles, which increased the oxidation rate of NH4+-N in the aerobic phase, the formation rate of NO3−-N in the aerobic phase, and the denitrification rate in the hypoxia phase at low temperatures. However, the community richness or diversities were not changed after short-term exposure to 1 g·L−1 ultrafine tourmaline particles at low temperatures and 1 g·L−1 ultrafine tourmaline particles could not change the relative abundances of functional microbes except nitrite oxidizing bacteria.
Collapse
|
11
|
He S, Ding L, Li K, Hu H, Ye L, Ren H. Comparative study of activated sludge with different individual nitrogen sources at a low temperature: Effluent dissolved organic nitrogen compositions, metagenomic and microbial community. BIORESOURCE TECHNOLOGY 2018; 247:915-923. [PMID: 30060430 DOI: 10.1016/j.biortech.2017.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/08/2023]
Abstract
The objective of this study was to explore nitrogen removal, especially effluent dissolved organic nitrogen (DON) composition, relative genes and microbial community structures with four individual nitrogen sources at 5°C. Results show that effluent DON did not have dependent relationship with the TN removal rate (urea>ammonia chloride>L-Alanine>D-Alanine). With the same influent TN, the highest effluent DON was formed with urea; the lowest DON was fed with ammonia chloride. The main DON composition was the product of cell metabolism excluding urea, rather than the original substrate. Glutamic acid synthesizing process was of great importance to DON accumulation at 5°C. The nitrogen source type was important to the diversity and heterogeneity of the nitrogen removal genes. Bacterial population structure using redundancy analysis (RDA) showed Simplicispira occupied a higher abundance remarkably in the reactors feeding with urea, and Dyadobacter occupied higher feeding with l-Alanine.
Collapse
Affiliation(s)
- Su He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
12
|
Gonzalez-Martinez A, Muñoz-Palazon B, Rodriguez-Sanchez A, Maza-Márquez P, Mikola A, Gonzalez-Lopez J, Vahala R. Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with cold-adapted activated sludge from Finland. BIORESOURCE TECHNOLOGY 2017; 239:180-189. [PMID: 28521227 DOI: 10.1016/j.biortech.2017.05.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
An aerobic granular sludge system has been started-up and operated at 7°C temperature using cold-adapted activated sludge as inoculum. The system could form granular biomass due to batch operation allowing for just 5-3min of biomass sedimentation. Scanning electron microscopy showed that fungi helped in the granular biomass formation in the early stages of the granule formation. The removal performance of the system was of 92-95% in BOD5, 75-80% in COD, 70-76% in total nitrogen and 50-60% in total phosphorous. The bacterial community structure from cold-adapted activated sludge changed during the operational time, leading to a final configuration dominated by Microbacteriaceae members Microbacterium and Leucobacter, which were strongly correlated to biomass settling velocity and bioreactor performance, as suggested by multivariate redundancy analyses. This experiment showed that aerobic granular sludge systems could be successfully started-up and operated, with high performance, under low operational temperatures when using cold-adapted biomass as inoculum.
Collapse
Affiliation(s)
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | | - Paula Maza-Márquez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Anna Mikola
- Department of Built Environment, University of Aalto, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Riku Vahala
- Department of Built Environment, University of Aalto, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| |
Collapse
|
13
|
Ma SJ, Ding LL, Huang H, Geng JJ, Xu K, Zhang Y, Ren HQ. Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge. BIORESOURCE TECHNOLOGY 2016; 214:645-652. [PMID: 27187569 DOI: 10.1016/j.biortech.2016.04.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
In this paper, we employ atomic force microscopy (AFM), fluorescence recovery after photobleaching (FRAP) technique, phospholipid fatty acids (PLFA) and MiSeq analysis to study the effects of traditional dissolved oxygen (DO) levels (0.71-1.32mg/L, 2.13-3.02mg/L and 4.31-5.16mg/L) on surface force, cell membrane properties and microbial community dynamics of activated sludge. Results showed that low DO level enhanced the surface force and roughness of activated sludge; the medium DO level decreased cell membrane fluidity by reducing the synthesis of branched fatty acids in the cell membrane; high DO level resulted in the highest protein content in the effluent by EEM scanning. Abundance of Micropruina, Zoogloea and Nakamurella increased and Paracoccus and Rudaea decreased with the increase of DO levels. RDA analysis suggested that saturated fatty acids (SFA), anteiso-fatty acids (AFA) and iso-fatty acids (IFA) were closely related to effluent quality as well as some genera.
Collapse
Affiliation(s)
- Si-Jia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jin-Ju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|