1
|
Wu Z, Yu X, Chen P, Pan M, Liu J, Sahandi J, Zhou W, Mai K, Zhang W. Dietary Clostridium autoethanogenum protein has dose-dependent influence on the gut microbiota, immunity, inflammation and disease resistance of abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109737. [PMID: 38960106 DOI: 10.1016/j.fsi.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0 % (control), 4.10 % (CAP4.10) and 16.25 % (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1 % of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as β-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10 % of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25 % of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.
Collapse
Affiliation(s)
- Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Javad Sahandi
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Lian J, He Y, Wang L, Liu Y, Wang K, Sunde J, Rebours C, Liu H, Zhu X, Han D, Hu Q, Li M. Recovery of nutrients from fish sludge to enhance the growth of microalga Chlorella sorokiniana CMBB276. MARINE POLLUTION BULLETIN 2024; 203:116421. [PMID: 38713927 DOI: 10.1016/j.marpolbul.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Intensive aquaculture production generates large amounts of sludge. This waste could be considered as a potential source of nutrients that can be recovered and utilized. Little attention has been paid to nutrient recovery from fish sludge. In this study, bioconversion of sludge was evaluated in lab scale under anaerobic (AN), facultative anaerobic (FA) and aerobic (AE) conditions. After 40 days of fermentation, AN recovered the highest values of dissolved total nitrogen (82.7 mg L-1), while AE showed the highest dissolved total phosphorus (11.8 mg L-1) and the highest reduction of total suspended solids (36.0 %). Microbial analysis showed that AN exhibited a distinct bacterial community than that of FA and AE. Furthermore, C. sorokiniana grown in AN effluents collected after 12 days of fermentation achieved the highest biomass production (1.96 g L-1). These results suggest that AN has the best potential to recover nutrients from sludge for production of C. sorokiniana.
Collapse
Affiliation(s)
- Jie Lian
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuqing He
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lan Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Kui Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | | | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Hu
- Faculty of Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Aquaculture—Production System and Waste Management for Agriculture Fertilization—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaculture is the fastest growing animal food production sector worldwide and is becoming the main source of aquatic animal foodstuff for human consumption. However, the aquaculture sector has been strongly criticized for its environmental impacts. It can cause discharge and accumulation of residual nutrients in the areas surrounding the production farms. This is because, of the total nutrients supplied to production ponds, only 30% are converted into product, while the rest is usually discharged into the environment to maintain water quality in aquaculture culture systems, thereby altering the physic-chemical characteristics of the receiving water. In contrast, this same accumulation of nutrients is gaining importance within the agricultural sector, as it has been reported that the main nutrients required by plants for their development are found in this aquaculture waste. The purpose of this review article is to indicate the different aquaculture production systems, the waste they generate, as well as the negative effects of their discharge into the environment. Biofiltration and bioremediation processes are mentioned as alternatives for aquaculture waste management. Furthermore, the state of the art in the treatment and utilization of aquaculture waste as a mineral source for agricultural nutrition through biodigestion and biomineralization processes is described. Finally, aquaponics is referred to as a biological production approach that, through efficient use of water and recycling of accumulated organic nutrients in aquaculture systems, can contribute to addressing the goals of sustainable aquaculture development.
Collapse
|
4
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
5
|
Biomethane Potential of Sludges from a Brackish Water Fish Hatchery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of intensive aquaculture is facing the challenge of the sustainable management of effluents. The reproductive sectors (i.e., hatcheries) mainly use water recirculation systems (RAS), which discharge a portion of wastewater. Anaerobic digestion (AD) could reduce the environmental impact of this waste stream while producing biogas. The study is focused on the biochemical methane potential (BMP) of brackish fish hatchery sludges. Wastewater was concentrated by microfiltration and sedimentation and thickened sludges were treated in a BMP system with different inoculum/substrate (I/S) volatile solids ratios (from 50:1 to no inoculum). The highest I/S ratio showed the highest BMP (564.2 NmL CH4/g VS), while different I/S ratios showed a decreasing trend (319.4 and 127.7 NmL CH4/g VS, for I/S = 30 and I/S = 3). In absence of inoculum BMP resulted of 62.2 NmL CH4/g VS. The kinetic analysis (modified Gompertz model) showed a good correlation with the experimental data, but with a long lag-phase duration (from 14.0 to 5.5 days) in particular with the highest I/S. AD applied to brackish water sludges can be a promising treatment with interesting methane productions. For a continuous, full-scale application further investigation on biomass adaptation to salinity and on retention times is needed. Further experimental tests are ongoing.
Collapse
|
6
|
Wu H, Yang M, Tsui TH, Yin Z, Yin C. Comparative evaluation on the utilization of applied electrical potential in a conductive granule packed biotrickling filter for continuous abatement of xylene: Performance, limitation, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111145. [PMID: 32801108 DOI: 10.1016/j.jenvman.2020.111145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the use of electrically conductive granules as packing material in biotrickling filter (BTF) systems as to provide insights on the specific microbial abundance and functions during the treatment of xylene-containing waste gas. In addition, the effect of applied potential on attached biofilm on conductive granules during xylene degradation was briefly investigated. During stable operation period, the conductive granules packed BTF achieved reactor performance of no less than 80% with a maximum EC of 137.7 g/m3 h. Under applied potential of 1V, the BTF system showed deterioration of xylene removal by ranging from 21 to 76%, which also affected the distribution and relative abundance of the major microorganisms such as Xanthobacter, Acidovorax, Rhodococcus, Hydrogenophaga, Arthrobacter, Brevundimonas, Pseudoxanthomonas, Devosia, Shinella, Sphingobium, Dokdonella, Pseudomonas and Bosea. The acclimation of applied potential led to the enrichment of autotrophic bacteria and strains, which are correlated to improved nitrogen cycling. In general, applying electrical potential is feasible to shape the microbiological structure of biofilms to selectively adjust their biochemical functions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, Yanbian University, Yanji, 133002, China; Department of Environmental Engineering, Yanshan University, Qinhuangdao, 066000, China
| | - Mengxin Yang
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - To-Hung Tsui
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| | - Chengri Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
7
|
Wang S, Chen M, Zheng K, Wan C, Li J. Promising carbon utilization for nitrogen recovery in low strength wastewater treatment: Ammonia nitrogen assimilation, protein production and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136306. [PMID: 32050365 DOI: 10.1016/j.scitotenv.2019.136306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Acetic acid and sodium acetate are generally supplied to wastewater treatment plants (WWTPs) in China to improve total nitrogen (TN) and total phosphorus (TP) removal, and the addition of carbon source also facilitates to increase sludge growth rate and further provides material basis for the extraction of proteins and amino acids from activated sludge. To recycle ammonia nitrogen resources, a system that combined adsorption and anaerobic-anoxic-oxic (A/AAO) process for treating low strength wastewater was established. Experimental results showed that by the addition of carbon substrate from a mixture of anaerobically fermented adsorption sludge, the average removal efficiency of chemical oxygen demand (COD), ammonia nitrogen, TN, and TP were 88%, 96.9%, 93.9%, and 92.1%, respectively, and the ratio of nitrogen assimilation to nitrogen dissimilation significantly increased by a factor of 2.5. Through energy analysis (based on adenosine triphosphate, ATP), sludge flocculation capacity and settling property, it was found that the AAO process sludge presented the logarithmic growth characteristics. The respective sludge protein and amino acids contents increased by over 11.4% and 40.3%, and the synthetic products of glutamic acid, alanine and aspartate increased through the assimilation of ammonia nitrogen, thereby indicating that replenishing the carbon substrate could markedly enhance protein and amino acids contents in AAO process sludge. Moreover, the diversity of the microbial community in adsorption process was relatively rich, the diversity in the adsorption process sludge was the highest, while the diversity of the AAO process sludge evidently decreased. The microbial community in each process was similarly based on 16S rDNA gene sequence analysis, microflora was prominent in the AAO process, with Dechloromonas, Flavobacterium, Zoogloea, Unclassified_Rhodocyclaceae and Thauera as the dominant species. Promising carbon utilization facilitates contaminants removal in low strength wastewater treatment and is conducive to protein production through ammonia nitrogen assimilation.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China; Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Mingfei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaikai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| |
Collapse
|
8
|
Wang S, Ma C, Zhu Y, Yang Y, Du G, Li J. Deep dewatering process of sludge by chemical conditioning and its potential influence on wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33838-33846. [PMID: 29905896 DOI: 10.1007/s11356-018-2351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
FeCl3, quick lime, and cationic polyacrylamide (CPAM) were used for excess sludge conditioning from wastewater treatment plant (WWTP) and the dewatering performance by different chemical conditioners was investigated. Experimental results showed that FeCl3 could make small and concentrated sludge particles. Furthermore, new mineral phase structures for building a dewatering framework were obtained by the addition of quick lime, and the coagulation capacity was enhanced by the formation of colloid hydroxyl polymer, which was induced due to the alkaline environment. In addition, the floc particle size significantly increased after the CPAM dosage. The bound water could be released with the stripping of tightly bound extracellular polymeric substance (EPS). Therefore, the dewatering performance and efficiencies were improved and subsequently the hypothetical sludge deep dewatering process was depicted in accordance with the variation of EPS. However, high-strength refractory organics in sludge filtrates caused by quick lime pyrolysis could lead to the unstable operation of the WWTP, because the relatively high concentrations of organic compounds with benzene were dominant in sludge dewatering filtrates.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Yin Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yangkun Yang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Ministry Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
9
|
Commercial African Catfish (Clarias gariepinus) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle. SUSTAINABILITY 2018. [DOI: 10.3390/su10061805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
He ZW, Liu WZ, Gao Q, Tang CC, Wang L, Guo ZC, Zhou AJ, Wang AJ. Potassium ferrate addition as an alternative pre-treatment to enhance short-chain fatty acids production from waste activated sludge. BIORESOURCE TECHNOLOGY 2018; 247:174-181. [PMID: 28950124 DOI: 10.1016/j.biortech.2017.09.073] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 05/16/2023]
Abstract
A potentially practical technology based on ferrate (VI), i.e. potassium ferrate (PF), pretreatment integrated into waste activated sludge (WAS) anaerobic fermentation has been presented to greatly enhance short-chain fatty acids (SCFAs) production with a shortened fermentation time. The maximum production of SCFAs, 343mg chemical oxygen demand/g volatile suspended solid with acetic acid proportion of 48.2%, was obtained with PF dosage of 56mg Fe(VI)/g total suspended solid within 5days, which was increased to 5.72times compared to that of control. The mechanism study showed that PF accelerated the release rate of both intracellular and extracellular constituents. And the activities of key hydrolytic enzymes were much improved with PF addition. Moreover, PF positively enriched the abundance of microorganisms responsible for WAS hydrolysis and SCFAs production, especially acetic acid-forming characteristic genera such as Petrimonas, Fusibacter and Acetoanaerobium. Besides, the incubation time of acidogenesis and methanogenesis were separated by PF.
Collapse
Affiliation(s)
- Zhang-Wei He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qin Gao
- Daqing Refining & Chemical Company, Daqing 163411, Heilongjiang, China
| | - Cong-Cong Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ze-Chong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Li C, Nges IA, Lu W, Wang H. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators. BIORESOURCE TECHNOLOGY 2017; 244:304-312. [PMID: 28780264 DOI: 10.1016/j.biortech.2017.07.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes.
Collapse
Affiliation(s)
- Chao Li
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Naturvetarvägen 14, 22241 Lund, Sweden; Nova Skantek Environmental Technology (Beijing) Co., Ltd, Beijing 100027, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ivo Achu Nges
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Naturvetarvägen 14, 22241 Lund, Sweden
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Haoyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Oko BJ, Tao Y, Stuckey DC. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:123. [PMID: 28503198 PMCID: PMC5426053 DOI: 10.1186/s13068-017-0812-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. RESULTS In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga, were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium. CONCLUSIONS The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other crude oil-waste-related bioengineering studies, such as bioaugmentation and bioremediation.
Collapse
Affiliation(s)
- Bonahis J. Oko
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ UK
| | - Yu Tao
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ UK
| | - David C. Stuckey
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ UK
| |
Collapse
|
13
|
De Vrieze J, Christiaens MER, Walraedt D, Devooght A, Ijaz UZ, Boon N. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. WATER RESEARCH 2017; 111:109-117. [PMID: 28063283 DOI: 10.1016/j.watres.2016.12.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 05/08/2023]
Abstract
Anaerobic digestion of high-salinity wastewaters often results in process inhibition due to the susceptibility of the methanogenic archaea. The ability of the microbial community to deal with increased salinity levels is of high importance to ensure process perseverance or recovery after failure. The exact strategy of the microbial community to ensure process endurance is, however, often unknown. In this study, we investigated how the microbial community is able to recover process performance following a disturbance through the application of high-salinity molasses wastewater. After a stable start-up, methane production quickly decreased from 625 ± 17 to 232 ± 35 mL CH4 L-1 d-1 with a simultaneous accumulation in volatile fatty acids up to 20.5 ± 1.4 g COD L-1, indicating severe process disturbance. A shift in feedstock from molasses wastewater to waste activated sludge resulted in complete process recovery. However, the bacterial and archaeal communities did not return to their original composition as before the disturbance, despite similar process conditions. Microbial community diversity was recovered to similar levels as before disturbance, which indicates that the metabolic potential of the community was maintained. A mild increase in ammonia concentration after process recovery did not influence methane production, indicating a well-balanced microbial community. Hence, given the change in community composition following recovery after salinity disturbance, it can be assumed that microbial community redundancy was the major strategy to ensure the continuation of methane production, without loss of functionality or metabolic flexibility.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Marlies E R Christiaens
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Diego Walraedt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Arno Devooght
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Umer Zeeshan Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, UK
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
14
|
Zhang X, Hu J, Spanjers H, van Lier JB. Struvite crystallization under a marine/brackish aquaculture condition. BIORESOURCE TECHNOLOGY 2016; 218:1151-1156. [PMID: 27469096 DOI: 10.1016/j.biortech.2016.07.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
The results in this study show that struvite was formed in the digester at pH 7.7 due to the magnesium naturally present and the released ammonia and phosphate, resulting in low phosphate concentration in the digester. Apparently the digester already provided proper conditions for struvite formation. Under the brackish condition, the estimated thermodynamic solubility product and enthalpy change of struvite formation were 10(-13.06) and 25.7kJmol(-1), respectively. The average crystal size under marine/brackish condition decreased with pH, but increased with temperature. X-ray diffraction measurements indicate struvite (NH4MgPO4·6H2O) and dittmarite (NH4MgPO4·H2O) were predominant phosphorus species produced in filtrates of the digester. However, struvite and newberyite (HMgPO4·3H2O) were the predominant species precipitated from synthetic brackish waters after dosing MgCl2. It is pronounced that (waste)water characteristics played also an important role on the nature of phosphate precipitates. Under high NH4(+) condition, phosphorus precipitates containing ammonia were dominant, compared to other amorphous phosphates.
Collapse
Affiliation(s)
- Xuedong Zhang
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands.
| | - Jianmei Hu
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
| | - Henri Spanjers
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
| | - Jules B van Lier
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands
| |
Collapse
|