1
|
Sim YB, Jung JH, Baik JH, Park JH, Kumar G, Rajesh Banu J, Kim SH. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass. BIORESOURCE TECHNOLOGY 2021; 340:125562. [PMID: 34325392 DOI: 10.1016/j.biortech.2021.125562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 05/27/2023]
Abstract
This study aimed to achieve continuous biohydrogen production from red algal biomass using a dynamic membrane bioreactor (DMBR). The DMBR was continuously fed with pretreated Echeuma spinosum containing 20 g/L hexose. The highest average hydrogen production rate (HPR) of 21.58 ± 1.59 L/L-d was observed at HRT 3 h, which was higher than previous reports for continuous H2 production from biomass feedstock. Metabolic flux analysis revealed that butyric acid and propionic acid were the major by-products of the H2-producing and H2-consuming pathways, respectively, of the algal biomass fermentation. Hydrogen consumption by propionic acid pathway could not be prevented completely by heat treatment. PICRUSt2 analysis predicted that Clostridium sp., Anaerostipes sp., and Caproiciproducens sp. might significantly contribute to the expression of both ferredoxin hydrogenase and propionate CoA-transferase. This study would provide the design and operational information on high-rate bioreactor for continuous hydrogen production using biomass.
Collapse
Affiliation(s)
- Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Baik
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hun Park
- Technology Development Center, Samsung Engineering Co. Ltd, Seoul 05288, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Liu R, Lin Y, Ye X, Hu J, Xu G, Li Y. Improved hydrogen production from pharmaceutical intermediate wastewater in an anaerobic maifanite-immobilized sludge reactor. RSC Adv 2021; 11:33714-33722. [PMID: 35497534 PMCID: PMC9042261 DOI: 10.1039/d1ra02522h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022] Open
Abstract
A novel anaerobic maifanite-immobilized sludge reactor (AMSR) was employed to investigate the feasibility and performance of continuous hydrogen production for the treatment of pharmaceutical intermediate wastewater (PIW) at different organic loading rates (OLR) (from 12 to 96 g COD L-1 d-1) according to changes in the hydraulic retention time (HRT). A reactor without maifanite was also employed as a control. The results indicate that maifanite accelerates granular sludge formation and the AMSR presents more efficient and stable performance than the control in terms of the hydrogen production rate. In the AMSR, the highest hydrogen production rate of 11.2 ± 0.4 mmol L-1 h-1 was achieved at an optimum OLR of 72 g COD L-1 d-1. The main metabolic route for hydrogen production was ethanol-type fermentation, which was reflected in the relative abundance of E. harbinense, which was dominant for all of the OLRs. The maximum energy conversion efficiency in the dual production of hydrogen and ethanol was determined to be 24.5 kJ L-1 h-1 at an OLR of 72 g COD L-1 d-1.
Collapse
Affiliation(s)
- Ruina Liu
- School of Forestry, Northeast Forestry University Harbin 150040 Heilongjiang China
- School of Ecology and Environment, Hainan Tropical Ocean University SanYa 572000 Hainan China
| | - Youwei Lin
- School of Ecology and Environment, Hainan Tropical Ocean University SanYa 572000 Hainan China
| | - Xiaodong Ye
- School of Ecology and Environment, Hainan Tropical Ocean University SanYa 572000 Hainan China
| | - Jinzhao Hu
- School of Ecology and Environment, Hainan Tropical Ocean University SanYa 572000 Hainan China
| | - Gongdi Xu
- School of Ecology and Environment, Hainan Tropical Ocean University SanYa 572000 Hainan China
| | - Yongfeng Li
- School of Forestry, Northeast Forestry University Harbin 150040 Heilongjiang China
| |
Collapse
|
3
|
Park JH, Chandrasekhar K, Jeon BH, Jang M, Liu Y, Kim SH. State-of-the-art technologies for continuous high-rate biohydrogen production. BIORESOURCE TECHNOLOGY 2021; 320:124304. [PMID: 33129085 DOI: 10.1016/j.biortech.2020.124304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Dark fermentation is a technically feasible technology for achieving carbon dioxide-free hydrogen production. This review presents the current findings on continuous hydrogen production using dark fermentation. Several operational strategies and reactor configurations have been suggested. The formation of attached mixed-culture microorganisms is a typical prerequisite for achieving high production rate, hydrogen yield, and resilience. To date, fixed-bed reactors and dynamic membrane bioreactors yielded higher biohydrogen performance than other configurations. The symbiosis between H2-producing bacteria and biofilm-forming bacteria was essential to avoid washout and maintain the high loading rates and hydrogenic metabolic flux. Recent research has initiated a more in-depth comparison of microbial community changes during dark fermentation, primarily with computational science techniques based on 16S rRNA gene sequencing investigations. Future techno-economic analysis of dark fermentative biohydrogen production and perspectives on unraveling mitigation mechanisms induced by attached microorganisms in dark fermentation processes are further discussed.
Collapse
Affiliation(s)
- Jong-Hun Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Sun C, Liu F, Song Z, Li L, Pan Y, Sheng T, Ren G. Continuous hydrogen and methane production from the treatment of herbal medicines wastewater in the two-phase 'UASB H-IC M' system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1134-1144. [PMID: 31799957 DOI: 10.2166/wst.2019.352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A two-phase anaerobic system comprised of upflow anaerobic sludge bed (UASB) reactor for hydrogen production and internal circulation reactor (IC) for methane production was proposed and investigated at laboratory scale and mesophilic temperature (35 °C). Hydrogen was efficiently produced from the UASB with the highest production rate of 3.00 ± 0.04 L · L-1 reactor · d-1 at optimum hydraulic retention time (HRT) of 6 h and in the IC, methane was also produced from residual organic matter and soluble metabolite products (SMP) with a production rate of 2.54 ± 0.04 L · L-1 reactor · d-1 at optimum HRT of 15 h. Finally, system HRT of 21 h was determined to be the optimum HRT at which energy conversion efficiency increased from 9.6 ± 0.1% (hydrogen only production) to 72.4 ± 2.5% (hydrogen and methane coproduction) and system chemical oxygen demand (COD) removal reached up to the high level of 90.1 ± 2.1%.
Collapse
Affiliation(s)
- Caiyu Sun
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Fang Liu
- College of Municipal and Environmental Engineering, Heilongjiang Institute of Construction Technology, Harbin 150040, China
| | - Zhiwei Song
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Lixin Li
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Yu Pan
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Tao Sheng
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Guangmeng Ren
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| |
Collapse
|
5
|
Anburajan P, Park JH, Pugazhendhi A, Kim JS, Kim SH. Biohydrogen production from glucose using submerged dynamic filtration module: Metabolic product distribution and flux-based analysis. BIORESOURCE TECHNOLOGY 2019; 287:121445. [PMID: 31113707 DOI: 10.1016/j.biortech.2019.121445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
A lab scale bioreactor with the submerged polyester mesh of pore size 100 μm, was used for biohydrogen production under mesophilic condition (35 °C). The reactor was continuously fed with glucose (15 g/L) for 90 days with a hydraulic retention time (HRT), ranging from 12 to 1.5 h. Peak hydrogen yield (HY) was achieved at 3 h HRT as 3.22 ± 0.22 mol H2/mol glucose added and the hydrogen production rate was achieved at 2 h HRT as 54.07 ± 3.69 L H2/L-d, respectively. When HRT was reduced to 1.5 h, the hydrogen yield decreased to 1.04 ± 0.44 mol H2/mol glucose added. Washout of the hydrogen producing population and metabolic flux shift to non-hydrogen producing at 1.5 h HRT might have attributed to the lower performance of the bioreactor.
Collapse
Affiliation(s)
- Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hun Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Jun-Seok Kim
- Department of Chemical Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Photosynthetic bacteria improved hydrogen yield of combined dark- and photo-fermentation. J Biotechnol 2019; 302:18-25. [PMID: 31202797 DOI: 10.1016/j.jbiotec.2019.06.298] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023]
Abstract
Integration of dark- and photo-fermentation is a promising strategy to enhance saline wastewater treatment efficiency and biohydrogen production. In this study, dark- and photo-fermentative bacterial consortium was respectively enriched and their communities were analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Both consortia were mainly composed of hydrogen-producing strains. After the first-stage dark-fermentation, the following conditions were applied prior to the second-stage fermentation: fermentative broth pH regulation (the pH group), glucose addition (the glucose group), glucose addition and pH regulation (the glucose + pH group), photosynthetic bacteria addition (the photo group), and photosynthetic bacteria addition and pH regulation (the photo + pH group), respectively. Dark fermentative broth with no pretreatment was used as control (the control group). Then the second stage began. The results showed that pH restriction had more influence than substrate or products restriction on dark-fermentative hydrogen production. Addition of photo-fermentative bacteria after dark-fermentation increased the hydrogen yield (134%) and substrate utilization (67%). These findings indicated syntrophic interactions between dark- and photo-fermentative bacteria during the hydrogen production process.
Collapse
|