1
|
Gong X, Qin S, Li T, Wei X, Liu S, Liu Y, Ma X, Li Q, Xia C. Novel Insight into the Synergistic Mechanism for Pd and Rh Promoting the Hydro-Defluorination of 4-Fluorophenol over Bimetallic Rh-Pd/C Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43474-43488. [PMID: 39113533 DOI: 10.1021/acsami.4c06180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explores the synergistic effect between the Rh and Pd of bimetallic Rh-Pd/C catalysts for the catalytic hydro-defluorination (HDF) of 4-fluorophenol (4-FP). It was found that 4-FP could not be efficiently hydro-defluorinated over 6% Pd/C and 6% Rh/C due to the inherent properties of Pd and Rh species in the dissociation of H2 and the activation of C-F bonds. Compared with 6% Pd/C and 6% Rh/C, bimetallic Rh-Pd/C catalysts, especially 1% Rh-5% Pd/C, exhibited much higher catalytic activity in the HDF of 4-FP, suggesting that the synergistic effect between the Rh and Pd of the catalyst was much more positive. Catalyst characterizations (BET, XRD, TEM, and XPS) were introduced to clarify the mechanism for the synergistic effect between the Rh and Pd of the catalyst in the HDF reaction and revealed that it was mainly attributed to the bifunctional mechanism: Pd species were favorable for the dissociation of H2, and Rh species were beneficial to the activation of C-F bonds in the HDF reaction. Meanwhile, the interaction between Rh and Pd species enabled Rh and Pd to exhibit a more positive synergistic effect, which promoted the migration of atomic H* from Pd to Rh species and thus enhanced the HDF of 4-FP. Furthermore, 1% Rh-5% Pd/C prepared using 20-40 equiv NaBH4 exhibited the best performance in the catalytic HDF of 4-FP. Catalysis characterizations suggested that appropriate Rh3+/Rh0 and Pd2+/Pd0 ratios were beneficial to the dissociation of H2 and the activation of C-F bonds, which caused the more positive synergistic effect between the Rh and Pd of Rh-Pd/C in the HDF reaction. This work offers a valuable strategy for enhancing the performance of catalytic HDF catalysts via promoting synergistic effects.
Collapse
Affiliation(s)
- Xutao Gong
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Shuting Qin
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Tong Li
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xinghua Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Sujing Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Ying Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chuanhai Xia
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
2
|
Yan Y, Qian J, Liu Y, Hu J, Lu B, Zhao S, Jin S, He Y, Xu K. Short-term exposure to triclocarban alters microbial community composition and metabolite profiles in freshwater biofilms. CHEMOSPHERE 2024; 362:142674. [PMID: 38908443 DOI: 10.1016/j.chemosphere.2024.142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Triclocarban (TCC), an emerging contaminant in water environments, its effects on freshwater biofilms remain insufficiently understood. This study investigates the effects of TCC exposure (at concentrations of 10 μg L-1 and 10 mg L-1) on mature freshwater biofilms. TCC was found to inhibit biofilm activity as evidenced by changes in surface morphology and the ratio of live/dead cells. Moreover, both concentrations of TCC were observed to modify the structure of the biofilm community. Metabolomics analysis revealed an overlap in the toxicity mechanisms and detoxification strategies triggered by various concentrations of TCC in biofilms. However, the higher toxicity induced by 10 mg L-1 TCC resulted from the downregulation of proline betaine, disrupting the homeostasis of cellular osmotic pressure regulation in biofilms. Notably, lipid and lipid-like molecules showed high sensitivity to different concentrations of TCC, indicating their potential as biomarkers for TCC exposure. Annotation of the differential metabolites by KEGG revealed that alterations in amino acid and carbon metabolism constituted the primary response mechanisms of biofilms to TCC. Moreover, the biofilm demonstrated enhanced nucleic acid metabolism, which bolstered resistance against TCC stress and heightened tolerance. Furthermore, elevated TCC concentrations prompted more robust detoxification processes for self-defense. Overall, short-term exposure to TCC induced acute toxicity in biofilms, yet they managed to regulate their community structure and metabolic levels to uphold oxidative homeostasis and activity. This research contributes to a deeper comprehension of TCC risk assessment and policy control in aquatic environments.
Collapse
Affiliation(s)
- Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jing Hu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Kailin Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
3
|
Ahmad HA, Ahmad S, Cui Q, Wang Z, Wei H, Chen X, Ni SQ, Ismail S, Awad HM, Tawfik A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151926. [PMID: 34838908 DOI: 10.1016/j.scitotenv.2021.151926] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Emerging pollutants (EPs) create a worldwide concern owing to their low concentration and severe toxicity to the receptors. The prominent emerging pollutants categories as pharmaceutical and personal care product, plasticizer, surfactants, and persistent organic pollutants. Typically, EPs are widely disseminated in the aquatic ecosystem and capable of perturbing the physiology of water bodies as well as humans. The primary sources of EPs in the environment include anthropogenic release, atmospheric deposition, untreated or substandard treated wastewater, and extreme weather events. Intensive research has been done covering the environmental distribution, ecological disturbance, fate, and removal of EPs in the past decades. However, a systematic review on the distribution of EPs in the engineered and natural aquatic environment and the degradation of different EPs by using anaerobic sludge, aerobic bacteria, and isolated strains are limited. This review article aims to highlight the importance, application, and future perceptions of using different microbes to degrade EPs. Overall, this review article illustrates the superiority of using non-cultivable and cultivable microbes to degrade the EPs as an eco-friendly approach. Practically, the outcomes of this review paper will build up the knowledge base solutions to remove EPs from the wastewater.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Qingjie Cui
- Department of Mechanical and Environmental Protection, Shandong Electric Power Engineering Consulting Institute Ltd. (SDEPCI), Jinan, Shandong 250013, China
| | - Zhibin Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haiwei Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xue Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China.
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt
| | - Hanem M Awad
- National Research Centre, Tanning Materials & Proteins Department, Dokki, Giza 12622, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Santorio S, Couto AT, Amorim CL, Val Del Rio A, Arregui L, Mosquera-Corral A, Castro PML. Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents. WATER RESEARCH 2021; 201:117293. [PMID: 34146761 DOI: 10.1016/j.watres.2021.117293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Ammonium and nitrite levels in water are crucial for fish health preservation and growth maintenance in freshwater aquaculture farms, limiting water recirculation. The aim of the present work was the evaluation and comparison of two granular sludge reactors which were operated to treat freshwater aquaculture streams at laboratory-scale: an Aerobic Granular Sludge - Sequencing Batch Reactor (AGS-SBR) and a Continuous Flow Granular Reactor (CFGR). Both units were fed with a synthetic medium mimicking an aquaculture recycling water (1.9-2.9 mg N/L), with low carbon content, and operational temperature varied between 17 and 25 °C. The AGS-SBR, inoculated with mature granules from a full-scale wastewater treatment plant, achieved high carbon and ammonium removal during the 157 operational days. Even at low hydraulic retention time (HRT), varying from 474 to 237 min, ammonium removal efficiencies of approximately 87-100% were observed, with an ammonium removal rate of approximately 14.5 mg NH4+-N/(L⋅d). Partial biomass washout occurred due to the extremely low carbon and nitrogen concentrations in the feeding, which could only support the growth of a small portion of bacteria, but no major changes on the reactor removal performance were observed. The CFGR was inoculated with activated sludge and operated for 98 days. Biomass granulation occurred in 7 days, improving the settling properties due to a high up-flow velocity of 11 m/h and an applied HRT of 5 min. The reactor presented mature granules after 32 days, achieving an average diameter of 1.9 mm at day 63. The CFGR ammonium removal efficiencies were of approximately 10-20%, with ammonium removal rates of 90.0 mg NH4+-N/(L⋅d). The main biological processes taking place in the AGS-SBR were nitrification and heterotrophic growth, while in the CFGR the ammonium removal occurred only by heterotrophic assimilation, with the reactor also presenting complete and partial denitrification, which caused nitrite production. Comparing both systems, the CFGR achieved 6 times higher ammonium removal rates than the AGS-SBR, being suitable for treating extremely high flows. On the other hand, the AGS-SBR removed almost 100% of ammonium content in the wastewater, discharging a better quality effluent, less toxic for the fish but treated lower flows.
Collapse
Affiliation(s)
- Sergio Santorio
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain.
| | - Ana T Couto
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Angeles Val Del Rio
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain
| | - Luz Arregui
- Grupo Tres Mares, S.L. Lires s/n, E-15270 Cee, A Coruña, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
5
|
Oliveira AS, Amorim CL, Zlopasa J, van Loosdrecht M, Castro PML. Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor. CHEMOSPHERE 2021; 275:130037. [PMID: 33667767 DOI: 10.1016/j.chemosphere.2021.130037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
An increasing amount of industrial chemicals are being released into wastewater collection systems and indigenous microbial communities in treatment plants are not always effective for their removal. In this work, extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) were used as a natural carrier to immobilize a specific microbial strain, Rhodococcus sp. FP1, able to degrade 2-fluorophenol (2-FP). The produced EPS granules exhibited a 2-FP degrading ability of 100% in batch assays, retaining their original activity after up to 2-months storage. Furthermore, EPS granules were added to an AGS reactor intermittently fed with saline wastewater containing 2-FP. Degradation of 2-FP and stoichiometric fluorine release occurred 8 and 35 days after bioaugmentation, respectively. Chemical oxygen demand removal was not significantly impaired by 2-FP or salinity loads. Nutrients removal was impaired by 2-FP load, but after bioaugmentation, the phosphate and ammonium removal efficiency improved from 14 to 46% and from 25 to 42%, respectively. After 2-FP feeding ceased, at low/moderate salinity (0.6-6.0 g L-1 NaCl), ammonium removal was completely restored, and phosphate removal efficiency increased. After bioaugmentation, 11 bacteria isolated from AGS were able to degrade 2-FP, indicating that horizontal gene transfer could have occurred in the reactor. The improvement of bioreactor performance after bioaugmentation with EPS immobilized bacteria and the maintenance of cell viability through storage are the main advantages of the use of this natural microbial carrier for bioaugmentation, which can benefit wastewater treatment processes.
Collapse
Affiliation(s)
- Ana S Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Jure Zlopasa
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
6
|
Duque AF, Bessa VS, van Dongen U, de Kreuk MK, Mesquita RBR, Rangel AOSS, van Loosdrecht MCM, Castro PML. Simultaneous nitrification and phosphate removal by bioaugmented aerobic granules treating a fluoroorganic compound. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2404-2413. [PMID: 34032618 DOI: 10.2166/wst.2021.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of toxic compounds in wastewater can cause problems for organic matter and nutrient removal. In this study, the long-term effect of a model xenobiotic, 2-fluorophenol (2-FP), on ammonia-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N) removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-FP was completely degraded. Neither N nor P removal were affected by 50 mg L-1 of 2-FP in the feed stream. Changes in the aerobic granule bacterial communities were followed. Numerical analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed low diversity for the ammonia monooxygenase (amoA) gene with an even distribution of species. PAOs, including denitrifying PAO (dPAO), and AOB were present in the 2-FP degrading granules, although dPAO population decreased throughout the 444 days reactor operation. The results demonstrated that the aerobic granules bioaugmented with FP1 strain successfully removed N, P and 2-FP simultaneously.
Collapse
Affiliation(s)
- Anouk F Duque
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, 4169-005 Porto, Portugal E-mail: ; † Present address: UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vânia S Bessa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, 4169-005 Porto, Portugal E-mail:
| | - Udo van Dongen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Merle K de Kreuk
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Raquel B R Mesquita
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, 4169-005 Porto, Portugal E-mail:
| | - António O S S Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, 4169-005 Porto, Portugal E-mail:
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, 4169-005 Porto, Portugal E-mail:
| |
Collapse
|
7
|
Paulo AMS, Amorim CL, Costa J, Mesquita DP, Ferreira EC, Castro PML. Long-term stability of a non-adapted aerobic granular sludge process treating fish canning wastewater associated to EPS producers in the core microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144007. [PMID: 33250239 DOI: 10.1016/j.scitotenv.2020.144007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The tolerance of aerobic granular sludge (AGS) to variable wastewater composition is perceived as one of its greatest advantages compared to other aerobic processes. However, research studies select optimal operational conditions for evaluating AGS performance, such as the use of pre-adapted biomass and the control of wastewater composition. In this study, non-adapted granular sludge was used to treat fish canning wastewater presenting highly variable organic, nutrient and salt levels over a period of ca. 8 months. Despite salt levels up to 14 g NaCl L-1, the organic loading rate (OLR) was found to be the main factor driving AGS performance. Throughout the first months of operation, the OLR was generally lower than 1.2 kg COD m-3 day-1, resulting in stable nitrification and low COD and phosphorous levels at the outlet. An increase in OLR up to 2.3 kg COD m-3 day-1 disturbed nitrification and COD and phosphate removal, but a decrease to average values between 1 and 1.6 kg COD m-3 day-1 led to resuming of those processes. Most of the bacteria present in the AGS core microbiome were associated to extracellular polymeric substances (EPS) production, such as Thauera and Paracoccus, which increased during the higher OLR period. Ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) species were detected in AGS biomass; while AOB were identified throughout the operation, NOB were no further identified after the period of increased OLR. Different polyphosphate-accumulating organisms (PAOs) were detected along the process: CandidatusAccumulibacter, Tetrasphaera and Gemmatimonas. A non-adapted granular sludge was able to treat the fish canning wastewater and to tolerate salinity fluctuations up to 14 g L-1. Overall, a high microbial diversity associated to EPS producers allowed to preserve bacterial groups responsible for nutrients removal, contributing to the adaptation and long-term stability of the AGS system.
Collapse
Affiliation(s)
- Ana M S Paulo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Joana Costa
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Daniela P Mesquita
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Eugénio C Ferreira
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
8
|
Yao J, Li W, Ou D, Lei L, Asif M, Liu Y. Performance and granular characteristics of salt-tolerant aerobic granular reactors response to multiple hypersaline wastewater. CHEMOSPHERE 2021; 265:129170. [PMID: 33302196 DOI: 10.1016/j.chemosphere.2020.129170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 05/12/2023]
Abstract
Aerobic granular sludge (AGS) technology has been recognized as a promising alternative to alleviate the osmotic stress of hypersaline wastewater. However, the response of AGS process to composite hypersaline wastewater on removal performance and populations was yet to be understood. In this work, two sequenced batch reactors were operated in parallel in absence (R0) and presence (R1) of high concentration sulfate as proxy for single and mixed salts (30 g salt·L-1) respectively. Results demonstrated that the presence of sulfate in hypersaline wastewater enhanced chemical oxygen demand (COD) and total nitrogen (TN) removals of 95.3% and 65.5% respectively with lower accumulations of nitrite. High-throughput 16 S rRNA gene sequencing technique elucidated that Denitromonas (31.6%) and Xanthomarina (17.0%) were the more dominant genera in AGS response to mixed salts with high sulfate and laid the biological basis for strengthening removal performance. The enrichment of halophilic Luteococcus (23.5%) in the AGS surface indicated the potential role of mixed salts in shaping the physical properties and surface population structure of AGS. Our work could facilitate the potential applications of AGS technology for industrial hypersaline wastewater treatment with complicated compositions.
Collapse
Affiliation(s)
- Jinchi Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Dong Ou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Lei Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Asif
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
9
|
Li X, Zhao X, Chen Z, Shen J, Jiang F, Wang X, Kang J. Isolation of oxytetracycline-degrading bacteria and its application in improving the removal performance of aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111115. [PMID: 32738758 DOI: 10.1016/j.jenvman.2020.111115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Aerobic granular sludge (AGS) is a type of biofilm with good sedimentation and density, high biomass, high organic load tolerance and toxicity resistance. Oxytetracycline (OTC) is an antibiotic widely used in livestock and aquaculture, and its low absorption and high residue bring many risks and harms to the ecological environment. In this study, an OTC-degrading strain TJ3 was isolated from AGS and identified as Pandoraea sp. The biodegradation characteristics of OTC by strain TJ3 under different environmental conditions were also investigated. The results showed that the optimal initial pH value and temperature for the culture strain were 6.0 and 30 °C, respectively. At an inoculation dose of 6% (v/v), the removal rate of OTC by strain TJ3 was remarkable (59.4%). Furthermore, when the sodium acetate was present as an additional substrate, the biomass and the OTC removal rate of strain TJ3 were improved. The biodegradability of strain TJ3 to OTC was proved by LC-QTOF/MS, and two possible biotransformation products, i.e. m/z 416 and 219, were identified. In the bioaugmentation experiments of AGS by strain TJ3, the average OTC removal rate was 92.89% after the stable operation of bioreactor. The chemical oxygen demand (COD), ammonium nitrogen (NH4+-N) and total phosphorus (TP) were efficiently removed. The microbial community structure had significantly changed at the genus level, and the relative abundance of Zoogloea, Pandoraea, Cloacibacterium and Desulfovibrio increased evidently. These results implied that the OTC removal performance and the structural stability of AGS were improved. In this study, Pandoraea sp. TJ3 was applied to removal OTC for the first time, and results showed that Pandoraea sp. TJ3 may be a new auxiliary bacterial resource for the biodegradation of OTC and a potential candidate in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Xiang Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Feng Jiang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
10
|
Sun H, Mei R, Zhang XX, Ren H, Liu WT, Ye L. Bacterial enrichment in highly-selective acetate-fed bioreactors and its application in rapid biofilm formation. WATER RESEARCH 2020; 170:115359. [PMID: 31821931 DOI: 10.1016/j.watres.2019.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, we systematically investigated the bacterial community dynamics in highly-selective (strong hydraulic selection pressure and high organic loading rate) bioreactors with acetate as the sole carbon source. 16S rRNA gene high-throughput sequencing and metagenomic sequencing results showed that phenolics-degrading bacteria (PDB), which were mainly Acinetobacter species, in the newly-formed aerobic granules could account for >70% of the total bacteria. Near full-length 16S rRNA gene sequences obtained by cloning suggest that the PDB are potentially novel species because they are distantly related to known Acinetobacter species. However, these PDB only temporarily appeared in the early stage of the granule formation and their abundance quickly decreased along the reactor operation. To retain these PDB, we demonstrated that the newly-formed aerobic granules could accelerate biofilm formation in moving bed biofilm reactors (MBBRs), and the biofilm carriers showed gradually-increased phenol degradation performance in the MBBRs. While, the bacterial community in biofilm significantly changed during the operation process of the MBBRs and the community structure became more complicated than that in the aerobic granules. Collectively, this study provides new insights into the microbial ecology of sludge granulation and biofilm formation process in the wastewater treatment systems for remediating phenolic matters.
Collapse
Affiliation(s)
- Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Kuyukina MS, Ivshina IB. Bioremediation of Contaminated Environments Using Rhodococcus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11461-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wang Q, Yao R, Yuan Q, Gong H, Xu H, Ali N, Jin Z, Zuo J, Wang K. Aerobic granules cultivated with simultaneous feeding/draw mode and low-strength wastewater: Performance and bacterial community analysis. BIORESOURCE TECHNOLOGY 2018; 261:232-239. [PMID: 29673991 DOI: 10.1016/j.biortech.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Sequence batch reactors (SBR) with simultaneous feeding/draw mode and low-strength wastewater were used for the cultivation of aerobic granules, and analysis of bacterial community diversity were conducted. Results revealed that the ratio of chemical oxygen demand/total nitrogen removal amount for R1 with real wastewater and R2 with synthetic wastewater decreased from 9.9 to 8.7 and, 29.9 to 21.1, respectively, when volumetric exchange ratio (VER) decreased from 90% (stage I) to 50% (stage II), indicating that organic matter in real and low-strength wastewater was fully utilized with lower VER by denitrifying bacteria. Relative abundances of the genus Dechloromonas, Pseudomonas, Bacillus in R1, which are responsible for denitrifying phosphorus removal, were much higher than that in R2, accounting for the high efficiency of nitrogen and phosphorus removal from real wastewater with low influent C/N ratio of 3.6 on average. These results provide useful information for improving wastewater treatment efficiency in the future.
Collapse
Affiliation(s)
- Qibin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Renda Yao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Heng Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhengyu Jin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
13
|
Moreira IS, Bessa VS, Murgolo S, Piccirillo C, Mascolo G, Castro PML. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:104-113. [PMID: 29407776 DOI: 10.1016/j.ecoenv.2018.01.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7-34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment.
Collapse
Affiliation(s)
- Irina S Moreira
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Vânia S Bessa
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Sapia Murgolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132 Bari, Italy
| | - Clara Piccirillo
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Giuseppe Mascolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132 Bari, Italy
| | - Paula M L Castro
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| |
Collapse
|