1
|
He B, Zheng X, Wang K, Liang W, Jia L, Sun J, Coseri S, Zhu X. A mild and efficient pretreatment strategy for the high-value utilization of cellulose derived from Sargassum spp. Int J Biol Macromol 2025; 306:141339. [PMID: 39986494 DOI: 10.1016/j.ijbiomac.2025.141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Algae are pivotal in biofuel production, with pretreatment serving as a crucial step in the process. Traditional methods predominantly rely on strong acids, bases, or high temperatures, which contradict the principles of green and sustainable development. To overcome these challenges, this study optimized a novel chemical pretreatment method for Sargassum spp. using ultrasound-assisted KMnO₄ and Na₂SO₃ at 20-60 °C. Key parameters, including reagent concentration, temperature, and reaction time, were refined, with optimal conditions established at 40 °C for 4 h. Ultrasound improved reagent permeability, while KMnO₄ and Na₂SO₃ disrupted the biomass structure through redox reactions. The cellulose content in the residual biomass increased from 11.99 wt% to 23.88 wt%, while AIR content decreased to 15.96 wt%. The maximum cellulose enzyme accessibility reached 19.56 mg/g. Compared to conventional methods, the glucose yield from Sargassum spp. hydrolysis increased from 51.62 mg/g to 107.75 mg/g, and ethanol yield from fermentation rose from 24.61 mg/g to 50.90 mg/g. This study presents a simple, cost-effective, efficient, and environmentally friendly pretreatment method for algal biomass, highlighting its significant industrial potential.
Collapse
Affiliation(s)
- Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Xulei Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Keyao Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Wenting Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Leilei Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Jiangman Sun
- Beijing Automotive Technology Center Co. Ltd, Beijing 101300, China
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China; Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada; Institute of Biomass & Functional Materials, Xi'an 710021, Shaanxi, China.
| |
Collapse
|
2
|
Sharker B, Islam MA, Hossain MAA, Ahmad I, Al Mamun A, Ghosh S, Rahman A, Hossain MS, Ashik MA, Hoque MR, Hossain MK, M Al Mamun, Haque MA, Patel H, Prodhan MY, Bhattacharya P, Haque MA. Characterization of lignin and hemicellulose degrading bacteria isolated from cow rumen and forest soil: Unveiling a novel enzymatic model for rice straw deconstruction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166704. [PMID: 37657552 DOI: 10.1016/j.scitotenv.2023.166704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Application of greener pretreatment technology using robust ligninolytic bacteria for short duration to deconstruct rice straw and enhance bioethanol production is currently lacking. The objective of this study is to characterize three bacterial strains isolated from the milieux of cow rumen and forest soil and explore their capabilities of breaking down lignocellulose - an essential process in bioethanol production. Using biochemical and genomic analyses these strains were identified as Bacillus sp. HSTU-bmb18, Bacillus sp. HSTU-bmb19, and Citrobacter sp. HSTU-bmb20. Genomic analysis of the strains unveiled validated model hemicellulases, multicopper oxidases, and pectate lyases. These enzymes exhibited interactions with distinct lignocellulose substrates, further affirmed by their stability in molecular dynamic simulations. A comprehensive expression of ligninolytic pathways, including β-ketoadipate, phenyl acetate, and benzoate, was observed within the HSTU-bmb20 genome. The strains secreted approximately 75-82 U/mL of cellulase, xylase, pectinase, and lignin peroxidase. FT-IR analysis of the bacterial treated rice straw fibers revealed that the intensity of lignin-related peaks decreased, while cellulose-related peaks sharpened. The values of crystallinity index for the untreated control and the treated rice straw with either HSTU-bmb18, or HSTU-bmb19, or HSTU-bmb20 were recorded to be 34.48, 28.49, 29.36, 31.75, respectively, which are much higher than that of 13.53 noted for those treated with the bacterial consortium. The ratio of fermentable cellulose in rice straw increased by 1.25-, 1.79-, 1.93- and 2.17-fold following treatments with HSTU-bmb18, HSTU-bmb20, HSTU-bmb19, and a mixed consortium of these three strains, respectively. These aggregative results suggested a novel model for rice straw deconstruction utilizing hydrolytic enzymes of the consortium, revealing superior efficacy compared to individual strains, and advancing cost-effective, affordable, and sustainable green technology.
Collapse
Affiliation(s)
- Bishal Sharker
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj-2310, Kishoreganj, Bangladesh; COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Al Amin Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, India
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Shohorab Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh; Department of Biochemistry and Molecular Biology, Trust University, Barishal, Bangladesh
| | - Md Ashikujjaman Ashik
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Bangladesh
| | - Md Rayhanul Hoque
- Department of Soil Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M Al Mamun
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md Atiqul Haque
- Department of Microbiology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh; Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 10044 Stockholm, Sweden.
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
| |
Collapse
|
3
|
Xue H, Qin R, Liu Y, Yuan L, Li G. An aggregated understanding of the influence of aqueous ammonia pretreatment on the physical deconstruction of cell walls in sugar beet pulp. Bioprocess Biosyst Eng 2023; 46:1427-1435. [PMID: 37490146 DOI: 10.1007/s00449-023-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
The underlying interplay between physicochemical property and enzymatic hydrolysis of cellulose still remains unclear. The impacts of matrix glycan composition of sugar beet pulp (SBP) on physical structure and saccharification efficiency were emphasized. The results showed that aqueous ammonia (AA) pretreatment could remove the non-cellulosic polysaccharides and destroy the linkage between the pectin and lignin. The cellulose supramolecule was changed significantly after AA pretreatment, in terms of the decline in hardness, gumminess, springiness, thickness and degree of polymerization. Furthermore, vascular cell was exposed and degraded. The highest reducing sugar yield of 355.06 mg/g was obtained from the pretreated SBP (80 °C) with enzyme loading of 30 U/g, which was 1.01 times higher than that of the untreated SBP. This research also supported the idea that recognizing and precisely removing the primary epitopes in cell walls might be an ideal strategy to accomplish the improved enzymatic hydrolysis through mild pretreatment.
Collapse
Affiliation(s)
- Huiting Xue
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010070, People's Republic of China
| | - Renjie Qin
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Yang Liu
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Lin Yuan
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China
| | - Guanhua Li
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, People's Republic of China.
| |
Collapse
|
4
|
Zeng G, Zhang L, Qi B, Luo J, Wan Y. Cellulose esterification with carboxylic acid in deep eutectic solvent pretreatment inhibits enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 380:129085. [PMID: 37100297 DOI: 10.1016/j.biortech.2023.129085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
Avicel cellulose was pretreated using two commonly used carboxylic acid-based deep eutectic solvents, i.e., choline chloride-lactic acid and choline chloride-formic acid. The pretreatment process resulted in the formation of cellulose esters with lactic acid and formic acid, which was confirmed by infrared and nuclear magnetic resonance spectra. Surprisingly, the esterified cellulose led to a significant decrease in the 48-h enzymatic glucose yield (≥75%) compared to raw Avicel cellulose. Analysis of changes in cellulose properties caused by pretreatment, including crystallinity, degree of polymerization, particle size and cellulose accessibility, contradicted the observed decline in enzymatic cellulose hydrolysis. However, removing the ester groups through saponification largely recovered the reduction in cellulose conversion. The decreased enzymatic cellulose hydrolysis by esterification may be attributed to changes in the interaction between cellulose-binding domain of cellulase and cellulose. These findings provide valuable insights into improving the saccharification of lignocellulosic biomass pretreated by carboxylic acid-based DESs.
Collapse
Affiliation(s)
- Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Liyi Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
5
|
Zhang R, Gao H, Wang Y, He B, Lu J, Zhu W, Peng L, Wang Y. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. BIORESOURCE TECHNOLOGY 2023; 369:128315. [PMID: 36414143 DOI: 10.1016/j.biortech.2022.128315] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose represents the most abundant carbon-capturing substance that is convertible for biofuels and bioproduction. Although biomass pretreatments have been broadly applied to reduce lignocellulose recalcitrance for enhanced enzymatic saccharification, they mostly require strong conditions with potential secondary waste release. By classifying all major types of pretreatments that have been recently conducted with different sources of lignocellulose substrates, this study sorted out their distinct roles for wall polymer extraction and destruction, leading to the optimal pretreatments evaluated for cost-effective biomass enzymatic saccharification to maximize biofuel production. Notably, all undigestible lignocellulose residues are also aimed for effective conversion into value-added bioproduction. Meanwhile, desired pretreatments were proposed for the generation of highly-valuable nanomaterials such as cellulose nanocrystals, lignin nanoparticles, functional wood, carbon dots, porous and graphitic nanocarbons. Therefore, this article has proposed a novel strategy that integrates cost-effective and green-like pretreatments with desirable lignocellulose substrates for a full lignocellulose utilization with zero-biomass-waste liberation.
Collapse
Affiliation(s)
- Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hairong Gao
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Yongtai Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Boyang He
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Jun Lu
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China.
| |
Collapse
|
6
|
He L, Huang Y, Shi L, Zhou Z, Wu H. Steam explosion processing intensifies the nutritional values of most crop byproducts: Morphological structure, carbohydrate-protein fractions, and rumen fermentation profile. Front Nutr 2022; 9:979609. [DOI: 10.3389/fnut.2022.979609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the feasibility of steam explosion on the exploitation of ruminant feedstuff, the morphological structure, carbohydrate-protein fractions, and rumen fermentation profile of five typical crop byproducts (corn cob, rice straw, peanut shell, millet stalk, and sugarcane tip) were analyzed before and after steam explosion processing. The results showed that these crop byproducts had different physicochemical properties and rumen fermentation profiles, most of which could be improved by steam explosion processing, i.e., more rough morphological surface, much-broken structure, more digestible carbohydrate fraction (non-NDF +49.92–452.24%), faster gas production rate (c +9.72–68.75%), higher dry matter digestibility (DMD48 +11.38–47.36%), more available energy (ME −3.69–+42.13%, except for peanut shell), along with more unavailable protein fraction (ADICP +27.16–102.70%). It is suggested that steam explosion processing could intensify the feeding value of most crop byproducts for ruminants, but with a caution of heat damage to proteins.
Collapse
|
7
|
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, Alugongo GM, Cao Z. Biodegradation and hydrolysis of rice straw with corn steep liquor and urea-alkali pretreatment. Front Nutr 2022; 9:989239. [PMID: 35990351 PMCID: PMC9387106 DOI: 10.3389/fnut.2022.989239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
The current study evaluated the corn steep liquor (CSL) and urea-alkali pretreatment effect to enhance biodegradation and hydrolysis of rice straw (RS) by ruminal microbiome. The first used RS (1) without (Con) or with additives of (2) 4% CaO (Ca), (3) 2.5% urea plus 4% CaO (UCa) and (4) 9% corn steep liquor + 2.5% urea + 4% CaO (CUCa), and then the efficacy of CSL plus urea-alkali pretreatment was evaluated both in vitro and in vivo. The Scanning electron microscopy, X-ray diffraction analysis, cellulose degree of polymerization and Fourier-transform infrared spectroscopy, respectively, results showed that Ca, UCa, and CUCa pretreatment altered the physical and chemical structure of RS. CSL plus Urea-alkali pretreated enhanced microbial colonization by improving the enzymolysis efficiency of RS, and specially induced adhesion of Carnobacterium and Staphylococcus. The CUCa pretreatment could be developed to improve RS nutritional value as forage for ruminants, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Ma Y, Chen X, Khan MZ, Xiao J, Cao Z. A Combination of Novel Microecological Agents and Molasses Role in Digestibility and Fermentation of Rice Straw by Facilitating the Ruminal Microbial Colonization. Front Microbiol 2022; 13:948049. [PMID: 35910602 PMCID: PMC9329086 DOI: 10.3389/fmicb.2022.948049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we evaluated the effect of microecological agents (MA) combined with molasses (M) on the biodegradation of rice straw in the rumen. Rice straw was pretreated in laboratory polyethylene 25 × 35 cm sterile bags with no additive control (Con), MA, and MA + M for 7, 15, 30, and 45 days, and then the efficacy of MA + M pretreatment was evaluated both in vitro and in vivo. The scanning electron microscopy, X-ray diffraction analysis, and Fourier-transform infrared spectroscopy results showed that the MA or MA + M pretreatment altered the physical and chemical structure of rice straw. Meanwhile, the ruminal microbial attachment on the surface of rice straw was significantly increased after MA+M pretreatment. Furthermore, MA + M not only promoted rice straw fermentation in vitro but also improved digestibility by specifically inducing rumen colonization of Prevotellaceae_UCG-001, Butyrivibrio, and Succinimonas. Altogether, we concluded that microecological agents and molasses could be the best choices as a biological pretreatment for rice straw to enhance its nutritive value as a ruminant's feed.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Department of Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review. ENERGIES 2022. [DOI: 10.3390/en15062209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Hydrothermal carbonization (HTC) continues to gain recognition over other valorization techniques for organic and biomass residue in recent research. The hydrochar product of HTC can be effectively produced from various sustainable resources and has been shown to have impressive potential for a wide range of applications. As industries work to adapt the implementation of HTC over large processes, the need for reliable models that can be referred to for predictions and optimization studies are becoming imperative. Although much of the available research relating to HTC has worked on the modeling area, a large gap remains in developing advanced computational models that can better describe the complex mechanisms, heat transfer, and fluid dynamics that take place in the reactor of the process. This review aims to highlight the importance of expanding the research relating to computational modeling for HTC conversion of biomass. It identifies six research areas that are recommended to be further examined for contributing to necessary advancements that need to be made for large-scale and continuous HTC operations. The six areas that are identified for further investigation are variable feedstock compositions, heat of exothermic reactions, type of reactor and scale-up, consideration of pre-pressurization, consideration of the heat-up period, and porosity of feedstock. Addressing these areas in future HTC modeling efforts will greatly help with commercialization of this promising technology.
Collapse
|
10
|
Sui W, Zhou X, Su H, Wang G, Jiang W, Liu R, Wu T, Wang S, Jin Y, Zhang M. Multi-fractal structure features of corn stalks and their correlation with pretreatment homogeneity and efficacy. BIORESOURCE TECHNOLOGY 2022; 346:126573. [PMID: 34923084 DOI: 10.1016/j.biortech.2021.126573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulose biomass is a natural porous medium with fractal characteristics, which tend to be distinct after certain pretreatment and relational with processing effects. In this work, multi-scale fractal features of corn stalks after steam explosion pretreatment were systematically characterized employing digital image processing and mercury intrusion porosimetry methodologies. The macroscopic surface fractal features (Ds: 2.8278 ∼ 2.8523) and microscopic pore fractal features (Dp: 2.3003 ∼ 2.8867) presented same variation tendency with pretreatment severity, revealing the self-similarity of processing results of corn stalks with the scale. In association with pretreatment homogeneity and efficacy, the decrease in fractal dimensions corresponded to morphologically homogeneous and structurally complex samples with preferable auto-hydrolysis degree of structural components, which led to high reactivity with enzymes. Quantitatively, there were strongly linear correlation between fractal dimensions and enzymatic digestibility with r2 > 0.95. Fractal dimension was expected to theoretically guide the rational evaluation, prediction and promotion of the key pretreatment technique in biorefinery.
Collapse
Affiliation(s)
- Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaodan Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hao Su
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wei Jiang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Shuai Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Agricultural University, Tianjin 300384, PR China.
| |
Collapse
|
11
|
Li M, Jiang B, Wu W, Wu S, Yang Y, Song J, Ahmad M, Jin Y. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. Int J Biol Macromol 2022; 195:274-286. [PMID: 34883164 DOI: 10.1016/j.ijbiomac.2021.11.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
From energy perspective, with abundant polysaccharides (45-85%), the renewable lignocellulosic is recognized as the 2nd generation feedstock for bioethanol and bio-based products production. Enzymatic hydrolysis is a critical pathway to yield fermentable monosaccharides from pretreated substrates of lignocellulose. Nevertheless, the lignin presence in lignocellulosic substrates leads to the low substrate enzymatic digestibility ascribed to the nonproductive adsorption. It has been reported that the water-soluble lignin (low molecular weight, sulfonated/sulfomethylated and graft polymer) enhance the rate of enzymatic digestibility, however, the catalytic mechanism of lignin-enzyme interaction remains elusive. In this review, optimization strategies for enzymatic hydrolysis based on the lignin structural modification, enzyme engineering, and different additives are critically reviewed. Lignin-enzyme interaction mechanism is also discussed (lignin and various cellulases). In addition, the mathematical models and simulation of lignin, cellulose and enzyme aims for promoting an integrated biomass-conversion process for sustainable production of value-added biofuels.
Collapse
Affiliation(s)
- Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, China; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Wang Y, Xu X, Xue H, Zhang D, Li G. Physical-chemical properties of cell wall interface significantly correlated to the complex recalcitrance of corn straw. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:196. [PMID: 34598712 PMCID: PMC8487139 DOI: 10.1186/s13068-021-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tissue heterogeneity significantly influences the overall saccharification efficiency of plant biomass. However, the mechanisms of specific organ or tissue recalcitrance to enzymatic deconstruction are generally complicated and unclear. A multidimensional analysis of the anatomical fraction from 12 corn cultivars was conducted to understand the essence of recalcitrance. RESULTS The results showed that leaf, leaf sheath, stem pith and stem rind of corn straw exhibited remarkable heterogeneity in chemical composition, physical structure and cell type, which resulted in the different saccharification ratio of cellulose. The high saccharification ratio ranging from 21.47 to 38.96% was in stem pith, whereas the low saccharification ratio ranging from 17.1 to 27.43% was in leaf sheath. High values of lignin, hemicelluloses, degree of polymerization and crystallinity index were critical for the increased recalcitrance, while high value of neutral detergent soluble and pore size generated weak recalcitrance. Interestingly, pore traits of cell wall, especial for microcosmic interface structure, seemed to be a crucial factor that correlated to cellulase adsorption and further affected saccharification. CONCLUSIONS Highly heterogeneity in cell wall traits influenced the overall saccharification efficiency of biomass. Furthermore, the holistic outlook of cell wall interface was indispensable to understand the recalcitrance and promote the biomass conversion.
Collapse
Affiliation(s)
- Yufen Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, 49 Xilin Road, Hohhot, 010070, China
| | - Xianyang Xu
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, 49 Xilin Road, Hohhot, 010070, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Jinshan Road, Hohhot, 010110, China
| | - Dejian Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, 49 Xilin Road, Hohhot, 010070, China.
| | - Guanhua Li
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, 49 Xilin Road, Hohhot, 010070, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 49 Xilin Road, Hohhot, 010070, China.
| |
Collapse
|
13
|
Nie D, Yao L, Xu X, Zhang Z, Li Y. Promoting corn stover degradation via sequential processing of steam explosion and cellulase/lactic acid bacteria-assisted ensilage. BIORESOURCE TECHNOLOGY 2021; 337:125392. [PMID: 34130232 DOI: 10.1016/j.biortech.2021.125392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
To improve the utilization efficiency of corn stover , steam explosion pretreatment and cellulase/lactic acid bacteria-assisted ensilage storage were conducted in sequence, mainly focusing on morphological structure, lignocellulose fraction, cellulose accessibility and degradation profile. The results showed that there was a synergistic effect of steam explosion and ensilage storage, where hemicellulose of corn stover was partly degraded during steam explosion processing (70%) or ensilage storage (20-40%). Meanwhile, its morphological structure was apparently broken, increasing cellulose accessibility (2.44, 2.83, 4.08-4.33 mg/g), where enzyme YDL and inoculant QZB were the two most effective additives. Furthermore, rumen effective degradability of corn stover (39.25%, 48.33%, 52.57-54.07%) were increased along with greater rapid degradation fraction (0, 1.67%, 9.16-11.62%) and degradation rate of slow degradation fraction (0.020, 0.034, 0.039-0.048 h-1) . In conclusions, it is suggested that treating corn stover with steam explosion processing and ensilage storage is a feasible way to improve its utilization efficiency.
Collapse
Affiliation(s)
- Dechao Nie
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lingyun Yao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaokai Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhuo Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yanling Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
14
|
Leroy A, Falourd X, Foucat L, Méchin V, Guillon F, Paës G. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:164. [PMID: 34332625 PMCID: PMC8325808 DOI: 10.1186/s13068-021-02015-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. RESULTS HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β-O-4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in [Formula: see text], [Formula: see text] and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5-15 nm pore size range. CONCLUSION The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316, Nantes, France
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France
| | - Xavier Falourd
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Loïc Foucat
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Valérie Méchin
- INRAE, Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | | | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France.
| |
Collapse
|
15
|
Madadi M, Wang Y, Xu C, Liu P, Wang Y, Xia T, Tu Y, Lin X, Song B, Yang X, Zhu W, Duanmu D, Tang SW, Peng L. Using Amaranthus green proteins as universal biosurfactant and biosorbent for effective enzymatic degradation of diverse lignocellulose residues and efficient multiple trace metals remediation of farming lands. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124727. [PMID: 33310336 DOI: 10.1016/j.jhazmat.2020.124727] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Improving biomass enzymatic saccharification is effective for crop straw utilization, whereas phytoremediation is efficient for trace metal elimination from polluted agricultural soil. Here, we found that the green proteins extracted from Amaranthus leaf tissue could act as active biosurfactant to remarkably enhance lignocellulose enzymatic saccharification for high bioethanol production examined in eight grassy and woody plants after mild chemical and green-like pretreatments were performed. Notably, this study estimated that total green proteins supply collected from one-hectare-land Amaranth plants could even lead to additional 6400-12,400 tons of bioethanol, being over 10-fold bioethanol yield higher than those of soybean seed proteins and chemical surfactant. Meanwhile, the Amaranth green proteins were characterized as a dominated biosorbent for multiple trace metals (Cd, Pb, As) adsorption, being 2.9-6 folds higher than those of its lignocellulose. The Amaranth plants were also assessed to accumulate much more trace metals than all other plants as previously examined from large-scale contaminated soils. Furthermore, the Amaranth green proteins not only effectively block lignin to release active cellulases for the mostly enhanced biomass hydrolyzes, but also efficiently involve in multiple chemical bindings with Cd, which should thus address critical issues of high-costly biomass waste utilization and low-efficient trace metal remediation.
Collapse
Affiliation(s)
- Meysam Madadi
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Youmei Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengbao Xu
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Peng Liu
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Yanting Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Tao Xia
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Tu
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China
| | - Xinchun Lin
- State Key Lab Subtrop Silviculture, College of Forestry & Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Bo Song
- College of Environmental Science & Engineering, Guilin University of Technology, Guangxi, China
| | - Xiaoe Yang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wanbin Zhu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Deqiang Duanmu
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shang-Wen Tang
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| |
Collapse
|
16
|
Dai Y, Hu B, Yang Q, Nie L, Sun D. Comparison of the effects of different pretreatments on the structure and enzymatic hydrolysis of Miscanthus. Biotechnol Appl Biochem 2021; 69:548-557. [PMID: 33608903 DOI: 10.1002/bab.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Miscanthus is regarded as a desired bioenergy crop with enormous lignocellulose residues for biofuels and other chemical products. In this study, the effect of different pretreatments (including microwave, NaOH, CaO, and microwave + NaOH/CaO) on sugar yields was investigated, leading to largely varied hexose yields at 4.0-73.4% (% cellulose) released from enzymatic hydrolysis of pretreated Miscanthus residues. Among them, the highest yield of 73.4% for hexoses was obtained from 12% NaOH (w/v) solution pretreatment, whereas 1% CaO (w/w) and microwave pretreatment resulted in a lower hexose yield than the control (without pretreatment). The sugar yield from microwave followed with 1% NaOH pretreatment was 4.3 times higher than that of microwave followed with 1% CaO. However, the enzymatic hydrolysis efficiencies of the sample were 15.2% and 58.5% under microwave pretreatment followed by 12% NaOH or 12.5% CaO, respectively, which were lower than those of the same concentration of alkali (NaOH and CaO) pretreatments. To investigate the mechanism of varied enzymatic saccharification under different pretreatments, the changes in the surface structure and porosity of the Miscanthus-pretreated lignocelluses were studied by means of Fourier transform infrared, Congo red staining, and scanning electron microscopy analysis. The results show that the different pretreatments destroy the cell wall cladding structure and reduce the bonding force between cellulose, hemicellulose, and lignin to different degrees, therefore increasing the accessibility of cellulose and enhancing cellulose digestion.
Collapse
Affiliation(s)
- Yongyong Dai
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Bing Hu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Qiaomei Yang
- College of Plant science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Longhui Nie
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Dan Sun
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021; 26:molecules26020254. [PMID: 33419100 PMCID: PMC7825460 DOI: 10.3390/molecules26020254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.
Collapse
|
18
|
Acid soaking followed by steam flash-explosion pretreatment to enhance saccharification of rice husk for poly(3-hydroxybutyrate) production. Int J Biol Macromol 2020; 160:446-455. [DOI: 10.1016/j.ijbiomac.2020.05.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
|
19
|
Wang K, Nan X, Tong J, Zhao G, Jiang L, Xiong B. Steam Explosion Pretreatment Changes Ruminal Fermentation in vitro of Corn Stover by Shifting Archaeal and Bacterial Community Structure. Front Microbiol 2020; 11:2027. [PMID: 32983029 PMCID: PMC7483759 DOI: 10.3389/fmicb.2020.02027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Steam explosion is an environment-friendly pretreatment method to improve the subsequent hydrolysis process of lignocellulosic biomass. Steam explosion pretreatment improved ruminal fermentation and changed fermentation pattern of corn stover during ruminal fermentation in vitro. The study gave a comprehensive insight into how stream explosion pretreatment shifted archaeal and bacterial community structure to change ruminal fermentation in vitro of corn stover. Results showed that steam explosion pretreatment dramatically improved the apparent disappearance of dry matter (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF). Steam explosion pretreatment significantly increased the molar proportion of propionate and decreased the ratio of acetate to propionate. At archaeal level, steam explosion pretreatment significantly increased the relative abundance of Methanobrevibacter, which can effectively remove metabolic hydrogen to keep the fermentation continuing. At bacterial level, the shift in fermentation was achieved by increasing the relative abundance of cellulolytic bacteria and propionate-related bacteria, including Spirochaetes, Elusimicrobia, Fibrobacteres, Prevotella, Treponema, Ruminococcus, and Fibrobacter.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Tong
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Wu Y, Wang M, Yu L, Tang SW, Xia T, Kang H, Xu C, Gao H, Madadi M, Alam A, Cheng L, Peng L. A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135096. [PMID: 31806312 DOI: 10.1016/j.scitotenv.2019.135096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is one of the most hazardous trace metals, and rapeseed is a major oil crop over the world with considerable lignocellulose residues applicable for trace metal phytoremediation and cellulosic ethanol co-production. In this study, we examined that two distinct rapeseed cultivars could accumulate Cd at 72.48 and 43.70 ug/g dry stalk, being the highest Cd accumulation among all major agricultural food crops as previously reported. The Cd accumulation significantly increased pectin deposition as a major factor for trace metal association with lignocellulose. Meanwhile, the Cd-accumulated rapeseed stalks contained much reduced wall polymers (hemicellulose, lignin) and cellulose degree of polymerization, leading to improved lignocellulose enzymatic hydrolysis. Notably, three optimal chemical pretreatments were performed for enhanced biomass enzymatic saccharification and bioethanol production by significantly increasing cellulose accessibility and lignocellulose porosity, along with a complete Cd release for collection and recycling. Hence, this study proposed a mechanism model interpreting why rapeseed stalks are able to accumulate much Cd and how the Cd-accumulated stalks are of enhanced biomass saccharification. It has also provided a powerful technology for both cost-effective Cd phytoremediation and value-added bioethanol co-production with minimum waste release.
Collapse
Affiliation(s)
- Yue Wu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Meiling Wang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops and Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Shang-Wen Tang
- Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Tao Xia
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Chengbao Xu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Hairong Gao
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Meysam Madadi
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aftab Alam
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Cheng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering and Nanomaterial Application in Automobiles, College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
21
|
He L, Chen N, Lv H, Wang C, Zhou W, Zhang Q, Chen X. Ensiling characteristics, physicochemical structure and enzymatic hydrolysis of steam-exploded hippophae: Effects of calcium oxide, cellulase and Tween. BIORESOURCE TECHNOLOGY 2020; 295:122268. [PMID: 31675519 DOI: 10.1016/j.biortech.2019.122268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
To find a comprehensive way to enhance the utilizability of steam-exploded hippophae, calcium oxide (CaO) preimpregnation, cellulase-added storage and saccharification with addition of Tween 20 were investigated in this study. Both CaO preimpregnation and cellulase addition promoted the ensiling fermentation of anaerobically stored steam-exploded hippophae indicated by lower cellulose proportion and higher organic acids content, but led to the decrease of saccharification yield by 11.83% and 46.77-51.22%, respectively. When taking into account of organic acids being utilizable energy source, storing with addition of cellulase enhanced the utilizability of the materials in whole. Moreover, the addition of Tween 20 enhanced saccharification yield of the steam-exploded hippophae by 26.69-45.25%. Additionally, FTIR and XRD spectra clearly illustrated the structural alteration during storage. It is concluded that storing with addition of cellulase and hydrolyzing with addition of Tween 20 can enhance the utilizability of steam-exploded hippophae.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Na Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Hu H, Zhang R, Tang Y, Peng C, Wu L, Feng S, Chen P, Wang Y, Du X, Peng L. Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. PLANT MOLECULAR BIOLOGY 2019; 101:389-401. [PMID: 31432304 DOI: 10.1007/s11103-019-00910-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production. Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.
Collapse
Affiliation(s)
- Huizhen Hu
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Tang
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Chenglang Peng
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Leiming Wu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiu Feng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Chen
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Xu C, Zhang J, Zhang Y, Guo Y, Xu H, Xu J, Wang Z. Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. BIORESOURCE TECHNOLOGY 2019; 292:121993. [PMID: 31442837 DOI: 10.1016/j.biortech.2019.121993] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Obtaining higher amount of final sugars with low cellulase dosage has great economic benefits for the industrial biorefinery of lignocellulosic biomass. The optimization of accessory enzymes and additives were performed using single factor and orthogonal experiment firstly, after that, fed-batch strategy was applied to enhance the high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse (SCB). A novel enzymatic hydrolysis procedure with 22% (w/v) substrate content and cellulase dosage of only 4 FPU/g dry biomass (DM) was developed, after digested for 48 h, the achieved glucose titer, yield and productivity were 122 g/L, 80% and 2.54 g L-1 h-1, respectively. Results obtained in this study indicated a potential finding for the industrial application of lignocellulosic biomass.
Collapse
Affiliation(s)
- Chao Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of China Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of China Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huijuan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jingliang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
24
|
Shi T, Lin J, Li J, Zhang Y, Jiang C, Lv X, Fan Z, Xiao W, Xu Y, Liu Z. Pre-treatment of sugarcane bagasse with aqueous ammonia-glycerol mixtures to enhance enzymatic saccharification and recovery of ammonia. BIORESOURCE TECHNOLOGY 2019; 289:121628. [PMID: 31226675 DOI: 10.1016/j.biortech.2019.121628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
In this work, an efficient aqueous ammonia with glycerol (AAWG) method to improve the digestibility of sugarcane bagasse (SCB) was developed. Response surface methodology was utilized to optimize the AAWG parameters to achieve the maximum total fermentable sugar concentration (TFSC) and total fermentable sugar yield (TFSY). Under optimal AAWG conditions, 13.59 g/L TFSC (9.25% ammonia, 1.86 h, 180 °C) and 0.4449 g/g TFSY (9.51% ammonia, 1.78 h, 180 °C) were achieved, with delignification of 77.81% and 70.91%, respectively. Compared to pretreatment with glycerol or aqueous ammonia, the AAWG method significantly enhanced the enzymatic efficiency of SCB. The ammonia was recovered from the pretreatment liquid by distillation, and about one-third of the ammonia was retained. The overall results indicate that AAWG is effectively used as a pretreatment method for recovering ammonia, which would largely contribute to the economic benefits of biomass biorefinery.
Collapse
Affiliation(s)
- Tingting Shi
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jiasheng Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan Zhang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Cuifeng Jiang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiaojing Lv
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zhaodi Fan
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yuan Xu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
25
|
He L, Wang C, Shi H, Zhou W, Zhang Q, Chen X. Combination of steam explosion pretreatment and anaerobic alkalization treatment to improve enzymatic hydrolysis of Hippophae rhamnoides. BIORESOURCE TECHNOLOGY 2019; 289:121693. [PMID: 31260934 DOI: 10.1016/j.biortech.2019.121693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The optimum condition of steam explosion pretreatment was screened for hippophae, and anaerobic calcium oxide (CaO) alkalization was further used to improve its enzymatic hydrolysis. Steam-exploded hippophae reached the lowest pH value (4.01) and the maximal hemicellulose removal (77.16%) at pressure 1.5 MPa and residence time 20 min. Lignocellulosic fractions of hippophae was remarkably reduced by CaO alkalization or steam explosion treatment, and enzymatic sugar yield was increased from 66 mg/g DM (untreated material) to 270 and 300 mg/g DM, respectively. The sequent pretreatment of steam explosion and CaO alkalization achieved a sugar yield of 330 mg/g DM, where 2% CaO loading rate was high enough. Besides, SEM, FTIR, and XRD analyses validated structural and physicochemical changes of hippophae. In conclusion, the sequent pretreatment of steam explosion at pressure 1.5 MPa for 20 min and anaerobic CaO alkalization at 2% loading rate could remarkably improve enzymatic hydrolysis of hippophae.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Honghui Shi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Zhan X, Cai C, Pang Y, Qin F, Lou H, Huang J, Qiu X. Effect of the isoelectric point of pH-responsive lignin-based amphoteric surfactant on the enzymatic hydrolysis of lignocellulose. BIORESOURCE TECHNOLOGY 2019; 283:112-119. [PMID: 30901583 DOI: 10.1016/j.biortech.2019.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/09/2023]
Abstract
The isoelectric point (pI) of lignin-based surfactant is an important factor in the enhancement on the enzymatic hydrolysis of lignocellulose. In this work, lignin carboxylate (LC) and quaternary ammonium lignin carboxylates (LCQ-x, x%: the mass ratio of quaternizing agent to enzymatic hydrolysis lignin) with different isoelectric points were synthesized. LC or LCQ-x with pI significantly lower or higher than 4.8 reduced the non-productive adsorption of cellulase on lignin, but for the significant inhibitory effect on cellulase activity, their enhancements on the enzymatic hydrolysis of lignocellulose were not remarkable. However, LCQ-x with pI around 4.8 preserved the cellulase activity, and significantly reduced the non-productive adsorption of cellulase, therefore remarkably enhanced the enzymatic hydrolysis. 2 g/L LC, LCQ-40 (pI = 5.0) and LCQ-100 (pI = 9.2) increased the enzymatic digestibility of pretreated eucalyptus from 35.2% to 53.4%, 95.3% and 60.4% respectively. In addition, for the excellent pH-response performance, LCQ could be efficiently recovered after enzymatic saccharification.
Collapse
Affiliation(s)
- Xuejuan Zhan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Cheng Cai
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Feiyang Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Alam A, Zhang R, Liu P, Huang J, Wang Y, Hu Z, Madadi M, Sun D, Hu R, Ragauskas AJ, Tu Y, Peng L. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:99. [PMID: 31057665 PMCID: PMC6486690 DOI: 10.1186/s13068-019-1437-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/13/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Miscanthus is a leading bioenergy crop with enormous lignocellulose production potential for biofuels and chemicals. However, lignocellulose recalcitrance leads to biomass process difficulty for an efficient bioethanol production. Hence, it becomes essential to identify the integrative impact of lignocellulose recalcitrant factors on cellulose accessibility for biomass enzymatic hydrolysis. In this study, we analyzed four typical pairs of Miscanthus accessions that showed distinct cell wall compositions and sorted out three major factors that affected biomass saccharification for maximum bioethanol production. RESULTS Among the three optimal (i.e., liquid hot water, H2SO4 and NaOH) pretreatments performed, mild alkali pretreatment (4% NaOH at 50 °C) led to almost complete biomass saccharification when 1% Tween-80 was co-supplied into enzymatic hydrolysis in the desirable Miscanthus accessions. Consequently, the highest bioethanol yields were obtained at 19% (% dry matter) from yeast fermentation, with much higher sugar-ethanol conversion rates by 94-98%, compared to the other Miscanthus species subjected to stronger pretreatments as reported in previous studies. By comparison, three optimized pretreatments distinctively extracted wall polymers and specifically altered polymer features and inter-linkage styles, but the alkali pretreatment caused much increased biomass porosity than that of the other pretreatments. Based on integrative analyses, excellent equations were generated to precisely estimate hexoses and ethanol yields under various pretreatments and a hypothetical model was proposed to outline an integrative impact on biomass saccharification and bioethanol production subjective to a predominate factor (CR stain) of biomass porosity and four additional minor factors (DY stain, cellulose DP, hemicellulose X/A, lignin G-monomer). CONCLUSION Using four pairs of Miscanthus samples with distinct cell wall composition and varied biomass saccharification, this study has determined three main factors of lignocellulose recalcitrance that could be significantly reduced for much-increased biomass porosity upon optimal pretreatments. It has also established a novel standard that should be applicable to judge any types of biomass process technology for high biofuel production in distinct lignocellulose substrates. Hence, this study provides a potential strategy for precise genetic modification of lignocellulose in all bioenergy crops.
Collapse
Affiliation(s)
- Aftab Alam
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ran Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Peng Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiangfeng Huang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Meysam Madadi
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068 China
| | - Ruofei Hu
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, 441053 China
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996-2200 USA
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
28
|
Du C, Nan X, Wang K, Zhao Y, Xiong B. Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structurein vitro. RSC Adv 2019; 9:41775-41782. [PMID: 35541616 PMCID: PMC9076558 DOI: 10.1039/c9ra08167d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Wheat straw is considered an abundant lignocellulosic biomass source in China. However, its recalcitrance hinders the degradation of wheat straw by enzymes and microbes. In this study, we investigated the optimum steam explosion conditions of pretreated wheat straw by response surface methodology to improve its nutrition level as a feedstuff for the ruminant industry or as a feedstock for biofuel production. The highest volatile fatty acid (VFA) yield (30.50 mmol L−1) was obtained at 2.3 MPa, 90 s and a moisture content of 36.46%. Under optimal conditions, steam explosion significantly altered the fermentation parameters in vitro. Ionic chromatography showed that pretreating wheat straw could improve the production of fermentable sugar, which was ascribed to the degradation of cellulose and hemicellulose. In addition, high throughput 16S rRNA amplicon sequencing analysis revealed that steam explosion changed the microbial community and enhanced the colonization of cellulolytic bacteria. Our findings demonstrated that steam explosion pretreatment could greatly improve the digestibility of wheat straw by facilitating sugar production and microbial colonization. Wheat straw is considered an abundant lignocellulosic biomass source in China.![]()
Collapse
Affiliation(s)
- Chunmei Du
- State Key Laboratory of Animal Nutrition
- Institute of Animal Sciences
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition
- Institute of Animal Sciences
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- China
| | - Kun Wang
- State Key Laboratory of Animal Nutrition
- Institute of Animal Sciences
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition
- Institute of Animal Sciences
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition
- Institute of Animal Sciences
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- China
| |
Collapse
|
29
|
Zhang Y, Di X, Xu J, Shao J, Qi W, Yuan Z. Effect of LHW, HCl, and NaOH pretreatment on enzymatic hydrolysis of sugarcane bagasse: sugar recovery and fractal-like kinetics. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1525365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Xiaohui Di
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingliang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Junchao Shao
- Guangzhou Foreign Language School, Guangzhou, China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| |
Collapse
|
30
|
Zhang H, Fan M, Li X, Zhang A, Xie J. Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. BIORESOURCE TECHNOLOGY 2018; 258:295-301. [PMID: 29555585 DOI: 10.1016/j.biortech.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 05/15/2023]
Abstract
In this work, a FeCl3-catalyzed organosolv pretreatment was employed at 160 °C to remove hemicellulose and lignin in sugarcane bagasse leaving the cellulose-enriched residue for enzymatic hydrolysis to sugars. The solubilized hemicellulose fractions consisted more monomer xylose than oligomer xylose. The FeCl3-catalyzed organosolv pretreatment significantly improved the enzymatic hydrolysis, nearly 100% of cellulose components were converted to glucose after pretreatment with 0.05 M FeCl3. Structural analysis was employed to reveal how pretreatment affected the enzymatic hydrolysis. With the addition of Tween 80, the same level of glucose was obtained with 50% reduction of enzyme dosage after 24 h. Furthermore, the influence of Tween 80 on different pretreatment systems was investigated, indicating that the improvement was increased as the lignin content increased, decreased with high enzyme loading and extending hydrolysis time. This work suggested that the addition of Tween 80 could improve the enzymatic hydrolysis, reduce the hydrolysis time and enzyme dosage.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, and Application, Guangzhou 510640, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530003, PR China.
| | - Meishan Fan
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Li
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
31
|
Hu H, Zhang R, Feng S, Wang Y, Wang Y, Fan C, Li Y, Liu Z, Schneider R, Xia T, Ding S, Persson S, Peng L. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:976-988. [PMID: 28944540 PMCID: PMC5902768 DOI: 10.1111/pbi.12842] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ran Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shengqiu Feng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Youmei Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunfen Fan
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zengyu Liu
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - René Schneider
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shi‐You Ding
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Staffan Persson
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
32
|
Zhao S, Li G, Zheng N, Wang J, Yu Z. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. BIORESOURCE TECHNOLOGY 2018; 253:244-251. [PMID: 29353752 DOI: 10.1016/j.biortech.2018.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guodong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhongtang Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Li Y, Zhuo J, Liu P, Chen P, Hu H, Wang Y, Zhou S, Tu Y, Peng L, Wang Y. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr Polym 2018; 192:273-281. [PMID: 29691021 DOI: 10.1016/j.carbpol.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/18/2022]
Abstract
Miscanthus is a leading bioenergy crop and rice provides enormous biomass for biofuels. Using Calcofluor White staining, this work in situ observed an initial lignocellulose hydrolysis in two distinct Miscanthus accessions, rice cultivar (NPB), and Osfc16 mutant after mild chemical pretreatments. In comparison, the M. sin and Osfc16 respectively exhibited weak Calcofluor fluorescence compared to the M. sac and NPB during enzymatic hydrolysis, consistent with the high biomass saccharification detected in vitro. Using xyloglucan-directed monoclonal antibodies (mAbs), xyloglucan deconstruction was observed from initial cellulose hydrolysis, whereas the M. sin and Osfc16 exhibited relatively strong immunolabeling using xylan-directed mAb, confirming previous findings of xylan positive impacts on biomass saccharification. Furthermore, the M. sin showed quick disappearance of RG-I immunolabeling with varied HG labelings between acid and alkali pretreatments. Hence, this study demonstrated a quick approach to explore wall polymer distinct deconstruction for enhanced biomass saccharification under chemical pretreatment in bioenergy crops.
Collapse
Affiliation(s)
- Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jingdi Zhuo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Peng Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
34
|
Lv X, Lin J, Luo L, Zhang D, Lei S, Xiao W, Xu Y, Gong Y, Liu Z. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by sodium methoxide with glycerol. BIORESOURCE TECHNOLOGY 2018; 249:226-233. [PMID: 29045926 DOI: 10.1016/j.biortech.2017.09.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Sodium methoxide (CH3ONa) with glycerol pretreatment (CWGP) was performed to improve the enzymatic digestibility of sugarcane bagasse (SCB). Response surface methodology was utilized to optimize the CWGP parameters for pretreating SCB from the perspective of total fermentable sugar yield (TFSY) and total fermentable sugar concentration (TFSC). Under the optimal CWGP conditions, 0.5666g/g of TFSY (0.82% CH3ONa, 1.11h, 150°C) and 17.75g/L of TFSC (0.87% CH3ONa, 1.38h, 149.27°C) were achieved, corresponding to delignification of 79.05% and 79.34%, respectively. Compared the pretreatment using glycerol or CH3ONa alone, the CWGP has significant synergies to enhance the enzymatic efficiency of SCB. The physical and chemical characteristics of untreated and pretreated SCBs were analyzed using FT-IR, XRD, and SEM, and the results suggest that CWGP significantly increased the susceptibility of the substrates to enzymatic digestibility. Ultimately, CWGP might be a prospective candidate for the pretreatment process of enzyme-based lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Liang Luo
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Dou Zhang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Senlin Lei
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yuan Xu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
35
|
Sun D, Li Y, Wang J, Tu Y, Wang Y, Hu Z, Zhou S, Wang L, Xie G, Huang J, Alam A, Peng L. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. BIORESOURCE TECHNOLOGY 2017; 243:957-965. [PMID: 28738551 DOI: 10.1016/j.biortech.2017.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 05/11/2023]
Abstract
In this study, two rice cultivars were collected from experimental fields with seven nitrogen fertilizer treatments. All biomass samples contained significantly increased cellulose contents and reduced silica levels, with variable amounts of hemicellulose and lignin from different nitrogen treatments. Under chemical (NaOH, CaO, H2SO4) and physical (hot water) pretreatments, biomass samples exhibited much enhanced hexoses yields from enzymatic hydrolysis, with high bioethanol production from yeast fermentation. Notably, both degree of polymerization (DP) of cellulose and xylose/arabinose (Xyl/Ara) ratio of hemicellulose were reduced in biomass residues, whereas other wall polymer features (cellulose crystallinity and monolignol proportion) were variable. Integrative analysis indicated that cellulose DP, hemicellulosic Xyl/Ara and silica are the major factors that significantly affect cellulose crystallinity and biomass saccharification. Hence, this study has demonstrated that nitrogen fertilizer supply could largely enhance biomass saccharification in rice cultivars, mainly by reducing cellulose DP, hemicellulosic Xyl/Ara and silica in cell walls.
Collapse
Affiliation(s)
- Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China; MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Wuhan, China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aftab Alam
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China. http://bbrc.hzau.edu.cn
| |
Collapse
|
36
|
Tu Y, Wang L, Xia T, Sun D, Zhou S, Wang Y, Li Y, Zhang H, Zhang T, Madadi M, Peng L. Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. BIORESOURCE TECHNOLOGY 2017; 243:319-326. [PMID: 28683384 DOI: 10.1016/j.biortech.2017.06.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 05/05/2023]
Abstract
In this study, a combined pretreatment was performed in four wheat accessions using steam explosion followed with different concentrations of H2SO4 or NaOH, leading to increased hexoses yields by 3-6 folds from enzymatic hydrolysis. Further co-supplied with 1% Tween-80, Talq90 and Talq16 accessions exhibited an almost complete enzymatic saccharification of steam-exploded (SE) residues after 0.5% H2SO4 or 1% NaOH pretreatment, with the highest bioethanol yields at 18.5%-19.4%, compared with previous reports about wheat bioethanol yields at 11%-17% obtained under relatively strong pretreatment conditions. Furthermore, chemical analysis indicated that much enhanced saccharification in Talq90 and Talq16 may be partially due to their relatively low cellulose CrI and DP values and high hemicellulose Ara and H-monomer levels in raw materials and SE residues. Hence, this study has not only demonstrated a mild pretreatment technology for a complete saccharification, but it has also obtained the high ethanol production in desirable wheat accessions.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heping Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meysam Madadi
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, Cai X, Peng L. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:221. [PMID: 28932262 PMCID: PMC5603028 DOI: 10.1186/s13068-017-0911-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biomass recalcitrance and plant lodging are two complex traits that tightly associate with plant cell wall structure and features. Although genetic modification of plant cell walls can potentially reduce recalcitrance for enhancing biomass saccharification, it remains a challenge to maintain a normal growth with enhanced biomass yield and lodging resistance in transgenic plants. Sucrose synthase (SUS) is a key enzyme to regulate carbon partitioning by providing UDP-glucose as substrate for cellulose and other polysaccharide biosynthesis. Although SUS transgenic plants have reportedly exhibited improvement on the cellulose and starch based traits, little is yet reported about SUS impacts on both biomass saccharification and lodging resistance. In this study, we selected the transgenic rice plants that expressed OsSUS3 genes when driven by the AtCesA8 promoter specific for promoting secondary cell wall cellulose synthesis in Arabidopsis. We examined biomass saccharification and lodging resistance in the transgenic plants and detected their cell wall structures and wall polymer features. RESULTS During two-year field experiments, the selected AtCesA8::SUS3 transgenic plants maintained a normal growth with slightly increased biomass yields. The four independent transgenic lines exhibited much higher biomass enzymatic saccharification and bioethanol production under chemical pretreatments at P < 0.01 levels, compared with the controls of rice cultivar and empty vector transgenic line. Notably, all transgenic lines showed a consistently enhanced lodging resistance with the increasing extension and pushing forces. Correlation analysis suggested that the reduced cellulose crystallinity was a major factor for largely enhanced biomass saccharification and lodging resistance in transgenic rice plants. In addition, the cell wall thickenings with the increased cellulose and hemicelluloses levels should also contribute to plant lodging resistance. Hence, this study has proposed a mechanistic model that shows how OsSUS3 regulates cellulose and hemicelluloses biosyntheses resulting in reduced cellulose crystallinity and increased wall thickness, thereby leading to large improvements of both biomass saccharification and lodging resistance in transgenic rice plants. CONCLUSIONS This study has demonstrated that the AtCesA8::SUS3 transgenic rice plants exhibited largely improved biomass saccharification and lodging resistance by reducing cellulose crystallinity and increasing cell wall thickness. It also suggests a powerful genetic approach for cell wall modification in bioenergy crops.
Collapse
Affiliation(s)
- Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengqiu Feng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiangfeng Huang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Leiming Wu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xukai Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- HaiKou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102 China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State University, Fargo, ND USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Huang J, Li Y, Wang Y, Chen Y, Liu M, Wang Y, Zhang R, Zhou S, Li J, Tu Y, Hao B, Peng L, Xia T. A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:294. [PMID: 29234462 PMCID: PMC5719720 DOI: 10.1186/s13068-017-0983-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/26/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The genetic modification of plant cell walls has been considered to reduce lignocellulose recalcitrance in bioenergy crops. As a result, it is important to develop a precise and rapid assay for the major wall polymer features that affect biomass saccharification in a large population of transgenic plants. In this study, we collected a total of 246 transgenic rice plants that, respectively, over-expressed and RNAi silenced 12 genes of the OsGH9 and OsGH10 family that are closely associated with cellulose and hemicellulose modification. We examined the wall polymer features and biomass saccharification among 246 transgenic plants and one wild-type plant. The samples presented a normal distribution applicable for statistical analysis and NIRS modeling. RESULTS Among the 246 transgenic rice plants, we determined largely varied wall polymer features and the biomass enzymatic saccharification after alkali pretreatment in rice straws, particularly for the fermentable hexoses, ranging from 52.8 to 95.9%. Correlation analysis indicated that crystalline cellulose and lignin levels negatively affected the hexose and total sugar yields released from pretreatment and enzymatic hydrolysis in the transgenic rice plants, whereas the arabinose levels and arabinose substitution degree (reverse xylose/arabinose ratio) exhibited positive impacts on the hexose and total sugars yields. Notably, near-infrared spectroscopy (NIRS) was applied to obtain ten equations for predicting biomass enzymatic saccharification and seven equations for distinguishing major wall polymer features. Most of the equations exhibited high R2/R2cv/R2ev and RPD values for a perfect prediction capacity. CONCLUSIONS Due to large generated populations of transgenic rice lines, this study has not only examined the key wall polymer features that distinctively affect biomass enzymatic saccharification in rice but has also established optimal NIRS models for a rapid and precise screening of major wall polymer features and lignocellulose saccharification in biomass samples. Importantly, this study has briefly explored the potential roles of a total of 12 OsGH9 and OsGH10 genes in cellulose and hemicellulose modification and cell wall remodeling in transgenic rice lines. Hence, it provides a strategy for genetic modification of plant cell walls by expressing the desired OsGH9 and OsGH10 genes that could greatly improve biomass enzymatic digestibility in rice.
Collapse
Affiliation(s)
- Jiangfeng Huang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuanyuan Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingyong Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ran Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jingyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102 China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Hao
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|