1
|
Chang S, Yun C, Yang B, Duan J, Chen T, Liu L, Li B, Guo S, Zhang S. Comprehensive reutilization of Glycyrrhiza uralensis residue by extrusion-biological pretreatment for coproduction of flavonoids, cellulase, and ethanol. BIORESOURCE TECHNOLOGY 2024; 406:131002. [PMID: 38889869 DOI: 10.1016/j.biortech.2024.131002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/22/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
A continuous chemical-free green approach was investigated for the comprehensive reutilization of all components in herbal extraction residues (HERs), taking Glycyrrhiza uralensis residue (GUR) as an example. The GUR structural changes induced by mechanical extrusion which improve the specific surface area and enzyme accessibility of GUR. With 3 % pretreated GUR loading of high-tolerance Penicillium oxalicum G2. The reducing sugar yield of 11.45 g/L was achieved, along with an 81.06 % in situ enzymatic hydrolysis. Finally, 8.23 g/L bioethanol (0.40 g/g total sugar) was produced from GUR hydrolysates after 24 h fermentation of Pichia stipitis G32. The amount of functional medicinal ingredients extracted from GUR after hydrolysis (39.63 mg/g) was 37.69 % greater than that of un-pretreated GUR. In total, 1.49 g flavonoids, 294.36 U cellulase, and 14.13 g ethanol could be produced from 100 g GUR using this process, illustrating that this green and efficient process has the potential for industrial production.
Collapse
Affiliation(s)
- Siyuan Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China; Bio-based Platform Chemicals Catalysis Engineering Technology Research and Development Center of Jiangsu Province, College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China
| | - Chenke Yun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Bingqian Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Tianyi Chen
- Bio-based Platform Chemicals Catalysis Engineering Technology Research and Development Center of Jiangsu Province, College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China
| | - Lei Liu
- Bio-based Platform Chemicals Catalysis Engineering Technology Research and Development Center of Jiangsu Province, College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China
| | - Bingfeng Li
- Bio-based Platform Chemicals Catalysis Engineering Technology Research and Development Center of Jiangsu Province, College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Gallego-García M, Moreno AD, Manzanares P, Negro MJ, Duque A. Recent advances on physical technologies for the pretreatment of food waste and lignocellulosic residues. BIORESOURCE TECHNOLOGY 2023; 369:128397. [PMID: 36503833 DOI: 10.1016/j.biortech.2022.128397] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The complete deployment of a bio-based economy is essential to meet the United Nations' Sustainable Development Goals from the 2030 Agenda. In this context, food waste and lignocellulosic residues are considered low-cost feedstocks for obtaining industrially attractive products through biological processes. The effective conversion of these raw materials is, however, still challenging, since they are recalcitrant to bioprocessing and must be first treated to alter their physicochemical properties and ease the accessibility to their structural components. Among the full pallet of pretreatments, physical methods are recognised to have a high potential to transform food waste and lignocellulosic residues. This review provides a critical discussion about the recent advances on milling, extrusion, ultrasound, and microwave pretreatments. Their mechanisms and modes of application are analysed and the main drawbacks and limitations for their use at an industrial scale are discussed.
Collapse
Affiliation(s)
- María Gallego-García
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain; Alcalá de Henares University, Spain
| | - Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - Paloma Manzanares
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain.
| | - Aleta Duque
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
3
|
Sinitsyn AP, Sinitsyna OA. Bioconversion of Renewable Plant Biomass. Second-Generation Biofuels: Raw Materials, Biomass Pretreatment, Enzymes, Processes, and Cost Analysis. BIOCHEMISTRY (MOSCOW) 2021; 86:S166-S195. [PMID: 33827407 DOI: 10.1134/s0006297921140121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses various aspects of renewable plant biomass conversion and production of the second-generation biofuels, including the types of plant biomass, its composition and reaction ability in the enzymatic hydrolysis, and various pretreatment methods for increasing the biomass reactivity. Conversion of plant biomass into sugars requires the use of a complex of enzymes, the composition of which should be adapted to the biomass type and the pretreatment method. The efficiency of enzymatic hydrolysis can be increased by optimizing the composition of the enzymatic complex and by increasing the catalytic activity and operational stability of its constituent enzymes. The availability of active enzyme producers also plays an important role. Examples of practical implementation and scaling of processes for the production of second-generation biofuels are presented together with the cost analysis of bioethanol production.
Collapse
Affiliation(s)
- Arkadij P Sinitsyn
- Bakh Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Sinitsyna
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Cha JS, Um BH. Delignification of Pinecone and Extraction of Formic Acid in the Hydrolysate Produced by Alkaline Fractionation. Appl Biochem Biotechnol 2020; 192:103-119. [PMID: 32270381 DOI: 10.1007/s12010-020-03311-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
The objectives of our research are to investigate the concept of delignification from pinecone through alkaline fractionation and then extraction of formic acid from the hydrolysate through esterification using ethanol. The pinecone is considered a promising material because of its relatively higher lignin content (35.80%) than other lignocellulosic biomass. The recovery yield of acid insoluble lignin (AIL) reached its maximum value of 79.20% at 8% NaOH, and the concentration of formic acid in the hydrolysate had its highest value under the same conditions. Moreover, the glucan content in fractionated solid remained high. The hydrolysate was subjected to esterification with ethanol under various reaction conditions for formic acid extraction, with solvent mixing ratio range: 1:1-1:4 v/v, reaction temperature range: 30-45 °C, and reaction time range: 60-100 min. Subsequently, the ethanol mixture (ethanol and ethyl formate) was recovered through distillation. The formic acid was extracted with more than 85% at mixing ratio of 1:2 and 45 °C for all reaction times. Furthermore, salt compounds composed mainly of Na and S were recovered because of its properties not soluble in ethanol solution.
Collapse
Affiliation(s)
- Jin Seong Cha
- Department of Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, South Korea
| | - Byung Hwan Um
- Department of Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, South Korea.
| |
Collapse
|