1
|
Qin T, Liu L, Cao H, Lu B, Nie S, Cheng Z, Zhang X, Liu H, An X. Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness. Int J Biol Macromol 2023; 253:126734. [PMID: 37683746 DOI: 10.1016/j.ijbiomac.2023.126734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Herein, a green facile approach to improve the flexibility of unbleached bamboo kraft pulp (UBKP) via an immobilized enzyme technology is proposed. Polydopamine (PDA) acts as versatile modification and coating materials of cellulose nanocrystals (CNC) for assembling versatile bio-carriers (PDA@CNC). Cellulase biomacromolecules are efficiently immobilized on PDA@CNC to form cellulase@PDA@CNC nanocomposites. The relative enzyme activity, temperature/pH tolerance, and storage stability of cellulase were significantly improved after immobilization. The degree of polymerization treated UBKP decreased by 5.42 % (25 U/g pulp) compared to the control sample. The flexibility of treated fibers was 6.61 × 1014/(N·m2), which was 96.93 % higher (25 U/g) compared to the control and 3.88 times higher than that of the blank fibers. Cellulase@PDA@CNC performs excellent accessibility to fiber structure and induces high degree of fibrillation and hydrolysis of UBKP fibers, which contributes high softness of obtained tissue handsheets. The bio-carrier PDA@CNC within paper framework may further enhance tissue tensile strength. This study proposes a practical and environmentally friendly immobilization approach of cellulase@PDA@CNC for improving the hydrolysis efficiency and flexibility of UBKP fibers, which provides the possibility to maintain the strength of tissue paper while improving its softness, thus broadening the high-value application of immobilized enzyme technology in tissue production.
Collapse
Affiliation(s)
- Tong Qin
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 9, 13(th) Street, TEDA, Tianjin 300457, PR China
| | - Liqin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 9, 13(th) Street, TEDA, Tianjin 300457, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Haibing Cao
- Zhejiang Jingxing Paper Co., Ltd, No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Bin Lu
- Zhejiang Jingxing Paper Co., Ltd, No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhengbai Cheng
- Zhejiang Jingxing Paper Co., Ltd, No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Xiaohong Zhang
- Zhejiang Jingxing Paper Co., Ltd, No. 1, Jingxing Industry Zone, Jingxing First Road, Caoqiao Street, Pinghu, Zhejiang Province 314214, PR China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 9, 13(th) Street, TEDA, Tianjin 300457, PR China.
| | - Xingye An
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, No. 9, 13(th) Street, TEDA, Tianjin 300457, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
2
|
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. ENVIRONMENTAL RESEARCH 2022; 214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Trishita Bhattacharya
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Vasanth Kumar Vaithyanathan
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Hubert Cabana
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India; University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada.
| |
Collapse
|
3
|
Zhou W, Zhou X, Rao Y, Lin R, Ge L, Yang P, Zhang H, Zhu C, Ying H, Zhuang W. Stabilizing bienzymatic cascade catalysis via immobilization in ZIF-8/GO composites obtained by GO assisted co-growth. Colloids Surf B Biointerfaces 2022; 217:112585. [PMID: 35667201 DOI: 10.1016/j.colsurfb.2022.112585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Enzyme catalysis has clear advantages in the process of oxidizing glucose to produce gluconic acid. In the enzyme cascade, the improvement of the cascade efficiency is desired but challenging. Graphene oxide (GO) and ZIF-8 composites as enzyme support offer the promising opportunity that not only the cascade efficiency can be improved by control the distance between two enzymes, but also the stability can be improved. Here, a new strategy of GO assisted co-growth of ZIF-8 and enzyme was carried in a one-pot synthesis. Glucose oxidase&catalase immobilized in the ZIF-8/GO composites can obtain 98% residual activity after 15 days of storage with almost no enzyme shedding. The residual activity is still higher than 75% after 5 repeated uses. The presented method of controllable growth of metal organic frameworks on 2D nanosheet can also be extended for renewable energy devices, gas storage and separation of small molecules.
Collapse
Affiliation(s)
- Wenfeng Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Xiaohong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yuan Rao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lei Ge
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hongman Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
4
|
Wang H, Yan J, Fu R, Yan H, Jiang C, Wang Y, Xu T. Bipolar Membrane Electrodialysis for Cleaner Production of Gluconic Acid: Valorization of the Regenerated Base for the Upstream Enzyme Catalysis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Huangying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Junying Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Rong Fu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Haiyang Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chenxiao Jiang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yaoming Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tongwen Xu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
5
|
Wang K, Jin W, Ding Y, Lyu Y, Liu J, Yu X. Dual enzyme co-immobilization on reversibly soluble polymers for the one-pot conversion of ferulic acid from wheat bran. NEW J CHEM 2022. [DOI: 10.1039/d2nj00035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The difficulty of using immobilized enzyme to decompose wheat bran to produce ferulic acid lies in the recovery of enzyme from solid-rich wheat bran hydrolysates. In this study, two enzymes...
Collapse
|
6
|
Wang Z, Liu W, Liu W, Ma Y, Li Y, Wang B, Wei X, Liu Z, Song H. Co-immobilized recombinant glycosyltransferases efficiently convert rebaudioside A to M in cascade. RSC Adv 2021; 11:15785-15794. [PMID: 35481200 PMCID: PMC9029319 DOI: 10.1039/d0ra10574k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Rebaudioside M (Reb M), as a natural and healthy Stevia sweetener, is produced by two glycosyltransferases that catalyze the serial glycosylation of Rebaudioside A (Reb A) and Rebaudioside D (Reb D) in cascade. Meanwhile, it is of great importance in developing an immobilization strategy to improve the reusability of glycosyltransferases in reducing the production cost of Reb M. Here, the recombinant glycosyltransferases, i.e., OsEUGT11 (UGT1) and SrUGT76G1 (UGT2), were expressed in Escherichia coli and covalently immobilized onto chitosan beads. UGT1 and UGT2 were individually immobilized and co-immobilized onto the beads that catalyze Reb A to Reb M in one-pot. The co-immobilized enzymes system exhibited ∼3.2-fold higher activity than that of the mixed immobilized enzymes system. A fairly high Reb A conversion rate (97.3%) and a high Reb M yield of 72.2% (4.82 ± 0.11 g L-1) were obtained with a feeding Reb A concentration of 5 g L-1. Eventually, after 4 and 8 reused cycles, the co-immobilized enzymes retained 72.5% and 53.1% of their original activity, respectively, showing a high stability to minimize the total cost of enzymes and suggesting that the co-immobilized UGTs is of potentially signficant value for the production of Reb M.
Collapse
Affiliation(s)
- Zhenyang Wang
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
- R&D Division, Sinochem Health Company Ltd. Qingdao 266071 China
| | - Wenbin Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Wei Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University Tianjin 300072 China
- Frontier Technology Institute (Wuqing), Tianjin University Tianjin 30072 China
| | - Yatong Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Baoqi Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
| | - Xiaozhen Wei
- R&D Division, Sinochem Health Company Ltd. Qingdao 266071 China
| | - Zhiming Liu
- College of Material Science and Engineering, Northeast Forestry University Harbin 150040 China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Qingdo Institute of Ocean Engineering of Tianjin University Qingdao 266237 China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Frontier Technology Institute (Wuqing), Tianjin University Tianjin 30072 China
| |
Collapse
|
7
|
Yu X, Zhang Z, Li J, Su Y, Gao M, Jin T, Chen G. Co-immobilization of multi-enzyme on reversibly soluble polymers in cascade catalysis for the one-pot conversion of gluconic acid from corn straw. BIORESOURCE TECHNOLOGY 2021; 321:124509. [PMID: 33316703 DOI: 10.1016/j.biortech.2020.124509] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The difficulties in the process of cellulose cascade conversion based on immobilization technology lies in the recycling enzymes from rich solid-containing straw hydrolysate and the incompatibility of conventional immobilization with this process. In this study, three types of enzyme (cellulase, glucose oxidase and catalase) were successfully immobilized on a reversible soluble Eudragit L-100. Through the determination of the preparation conditions, enzymatic properties and catalytic conditions, the co-immobilized enzyme was applied to the catalytic reaction of one-pot conversion of corn straw to gluconic acid. The yield of gluconic acid achieved 0.28 mg/mg, conversion rate of cellulose in corn straw to gluconic acid reached 61.41%. The recovery of co-immobilized enzyme from solid substrate was achieved by using reversible and soluble characteristics of the carrier. After 6 times of recycling, the activity of co-immobilized enzyme was maintained at 52.38%, confirming the feasibility of multi-enzyme immobilization strategy using reversible soluble carrier in cascade reactions.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoye Zhang
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jianzhen Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Mingyue Gao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tingwei Jin
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
8
|
Vanderstraeten J, Briers Y. Synthetic protein scaffolds for the colocalisation of co-acting enzymes. Biotechnol Adv 2020; 44:107627. [DOI: 10.1016/j.biotechadv.2020.107627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
9
|
Savino S, Fraaije MW. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol Adv 2020; 51:107634. [PMID: 32961251 DOI: 10.1016/j.biotechadv.2020.107634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Carbohydrates are widely abundant molecules present in a variety of forms. For their biosynthesis and modification, nature has evolved a plethora of carbohydrate-acting enzymes. Many of these enzymes are of particular interest for biotechnological applications, where they can be used as biocatalysts or biosensors. Among the enzymes catalysing conversions of carbohydrates are the carbohydrate oxidases. These oxidative enzymes belong to different structural families and use different cofactors to perform the oxidation reaction of CH-OH bonds in carbohydrates. The variety of carbohydrate oxidases available in nature reflects their specificity towards different sugars and selectivity of the oxidation site. Thanks to their properties, carbohydrate oxidases have received a lot of attention in basic and applied research, such that nowadays their role in biotechnological processes is of paramount importance. In this review we provide an overview of the available knowledge concerning the known carbohydrate oxidases. The oxidases are first classified according to their structural features. After a description on their mechanism of action, substrate acceptance and characterisation, we report on the engineering of the different carbohydrate oxidases to enhance their employment in biocatalysis and biotechnology. In the last part of the review we highlight some practical applications for which such enzymes have been exploited.
Collapse
Affiliation(s)
- Simone Savino
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
10
|
Ng HS, Kee PE, Yim HS, Chen PT, Wei YH, Chi-Wei Lan J. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. BIORESOURCE TECHNOLOGY 2020; 302:122889. [PMID: 32033841 DOI: 10.1016/j.biortech.2020.122889] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 05/28/2023]
Abstract
The increasing amounts of food wastage and accumulation generated per annum due to the growing human population worldwide often associated with environmental pollution issues and scarcity of natural resources. In view of this, science community has worked towards in finding sustainable approaches to replace the common practices for food waste management. The agricultural and food processing wastes rich in nutrients are often the attractive substrates for the bioconversion for valuable bioproducts such as industrial enzymes, biofuel and bioactive compounds. The sustainable approaches on the re-utilization of food wastes as the industrial substrates for production of valuable bioproducts has meet the goals of circular bioeconomy, results in the diversify applications and increasing market demands for the bioproducts. This review discusses the current practice and recent advances on reutilization of food waste for bioconversion of valuable bioproducts from agricultural and food processing wastes.
Collapse
Affiliation(s)
- Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip Seng Yim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Yu-Hong Wei
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
11
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
12
|
Arias PL, Cecilia JA, Gandarias I, Iglesias J, López Granados M, Mariscal R, Morales G, Moreno-Tost R, Maireles-Torres P. Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00240b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This minireview gives an overview about heterogeneous catalytic technologies for the oxidation of key platform molecules (glucose, 5-hydroxymethylfurfural, furfural and levulinic acid) into valuable chemicals.
Collapse
Affiliation(s)
- Pedro L. Arias
- Chemical and Environmental Engineering Department
- University of the Basque Country (UPV-EHU)
- Bilbao
- Spain
| | - Juan A. Cecilia
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| | - Iñaki Gandarias
- Chemical and Environmental Engineering Department
- University of the Basque Country (UPV-EHU)
- Bilbao
- Spain
| | - José Iglesias
- Chemical and Environmental Engineering Group
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Manuel López Granados
- Institute of Catalysis and Petrochemistry (CSIC)
- C/Marie Curie, 2
- Campus de Cantoblanco
- Madrid
- Spain
| | - Rafael Mariscal
- Institute of Catalysis and Petrochemistry (CSIC)
- C/Marie Curie, 2
- Campus de Cantoblanco
- Madrid
- Spain
| | - Gabriel Morales
- Chemical and Environmental Engineering Group
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Ramón Moreno-Tost
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| | - Pedro Maireles-Torres
- Universidad de Málaga
- Departamento de Química Inorgánica
- Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Campus de Teatinos
| |
Collapse
|
13
|
Mu Q, Cui Y, Tian Y, Hu M, Tao Y, Wu B. Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design. Int J Biol Macromol 2019; 136:1060-1068. [DOI: 10.1016/j.ijbiomac.2019.06.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
|
14
|
Han X, Liu G, Pan Y, Song W, Qu Y. Consolidated bioprocessing for sodium gluconate production from cellulose using Penicillium oxalicum. BIORESOURCE TECHNOLOGY 2018; 251:407-410. [PMID: 29258710 DOI: 10.1016/j.biortech.2017.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
The feasibility of consolidated bioprocessing for sodium gluconate production from cellulose was studied. A recombinant strain named z19 was constructed from Penicillium oxalicum wild-type strain 114-2 for simultaneous expression of glucose oxidase and catalase from Aspergillus niger. While keeping a cellulolytic ability similar with that of 114-2, z19 secreted certain amounts of glucose oxidase and catalase. Fed-batch and two-stage temperature control strategy (0-120 h, 30 °C; 120-192 h, 45 °C) was utilized for sodium gluconate production from cellulose (filter paper power), with 13.54 g/L of sodium gluconate obtained at the end of the fermentation. The results provide an alternative route for producing sodium gluconate from cellulose in a one-pot reaction.
Collapse
Affiliation(s)
- Xiaolong Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China; School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China; National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Wenxia Song
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China; National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|