1
|
Duc LV, Nagao S, Mojarrad M, Miyagawa Y, Li ZY, Inoue D, Tajima T, Ike M. Bioaugmentation with marine sediment-derived microbial consortia in mesophilic anaerobic digestion for enhancing methane production under ammonium or salinity stress. BIORESOURCE TECHNOLOGY 2023; 376:128853. [PMID: 36898569 DOI: 10.1016/j.biortech.2023.128853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shintaro Nagao
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mohammad Mojarrad
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuta Miyagawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Zi-Yan Li
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahisa Tajima
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Shi R, Han T, Xu S, Huang H, Qi Z, Zhu Q. Bacterial community responses to the redox profile changes of mariculture sediment. MARINE POLLUTION BULLETIN 2021; 166:112250. [PMID: 33725565 DOI: 10.1016/j.marpolbul.2021.112250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Suspended mariculture has significantly influences on the benthic sediment. However, our understanding on how bacterial communities respond to mariculture induced changes in redox profiles is limited. In present study, sediments from two maricultures and reference areas were collected and incubated for 28 day. The results indicated that the dominant pathway of organic matter mineralization in the sediment varied from groups, in the reference, it was the iron reduction, but in the two mariculture groups it was the SO42- reduction. Remarkable changes of bacteria community were recorded in the aerobic zone, where the abundances of 14 OTUs belonging to Gammaproteobacteria and Alphaproteobacteria were significantly higher than that in oxidation and anaerobic zones. However, 4 keystone OTUs were strictly anaerobic and belonging to Desulfobacteraceae (n = 3) and Marinilabiaceae (n = 1). The main environmental drivers determining sediment bacterial distribution were the particle organic carbon, dissolve oxygen, NO3-, and moisture content.
Collapse
Affiliation(s)
- Rongjun Shi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Tingting Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Shumin Xu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhanhui Qi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China.
| | - Qingzhi Zhu
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|
4
|
Chen Y, Wang C, Dong S, Jiang L, Shi Y, Li X, Zou W, Tan Z. Microbial community assembly in detergent wastewater treatment bioreactors: Influent rather than inoculum source plays a more important role. BIORESOURCE TECHNOLOGY 2019; 287:121467. [PMID: 31121447 DOI: 10.1016/j.biortech.2019.121467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In this study, three sequencing batch reactors Ra, Rb, Rc with different inoculum sources (activated sludge; activated sludge plus detergent degrading consortium; detergent degrading consortium) were used to treat detergent wastewater [consisting of sodium dodecyl sulfate, polyoxyethylene lauryl ether and tetrasodium ethylenediamine tetraacetate (Na4EDTA)]. Fast start-up and highest performance in phase I and II (organic loading rate were 0.28, 0.39 kgCOD/kgMLSS/d, respectively) were observed in Rc. In contrast, Rb showed highest impact resistance to the increase of EDTA concentration in phase III. High-throughput sequencing analysis showed that inoculum sources led to significant differences on microbial community in phase I. However, regardless of the influent variation in phases II and III, the differences on microbial community among three SBRs were diminished along long-term operation. Pseudomonas, Sphingopyxis, Luteimonas, Pseudoxanthomonas and SM1A02 were found to be the core taxa, they might contribute to the excellent performance of detergent wastewater treatment.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Chen Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Lian Jiang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Yan Shi
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Wantong Zou
- Chengdu No. 20 Middle School, Chengdu 610036, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China.
| |
Collapse
|