1
|
Wu Y, Zhang H, Lin Q, Zhu R, Zhao L, Wang X, Ren J, Meng L. Fractionation of lignin and fermentable sugars from wheat straw using an alkaline hydrogen peroxide/pentanol biphasic pretreatment. J Biotechnol 2024; 396:62-71. [PMID: 39426411 DOI: 10.1016/j.jbiotec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
To breakthrough the delignification saturation point (DSP) of alkaline hydrogen peroxide (AHP) pretreatment, a biphasic AHP/pentanol (AHPP) pretreatment was proposed in this work. The temperature and H2O2 concentration were evaluated. Under the optimal conditions (110 °C, 2 h, 4 % H2O2), 70.73 % of lignin was removed, which was increased by 11.65 % than the traditional AHP pretreatment, indicating successful overcoming of the DSP by adding pentanol. 85.74 % and 88.62 % of glucan and xylan digestibility were achieved, respectively, which increased by 7.41 % and 5.87 % as compared to AHP pretreatment. Furthermore, the lignin extracted from the organic phase accounted for 38.51 % of the delignification, and it had a low molecular weight, effectively preserving the β-O-4 bonds. Finally, satisfied pentanol recovery (77.91 %) and delignification (57.19 %) along with excellent glucan (76.11 %) and xylan (77.52 %) digestibility were reached after fourth recycling of AHPP pretreatment. Therefore, AHPP pretreatment was a promising method for biomass valorization within biorefinery concept.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Hui Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruonan Zhu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lihong Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Ling Meng
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Sankar Santhosh A, Umesh M, Kariyadan S, Suresh S, Salmen SH, Ali Alharb S, Shanmugam S. Fabrication of biopolymeric sheets using cellulose extracted from water hyacinth and its application studies for reactive red dye removal. ENVIRONMENTAL RESEARCH 2024; 240:117466. [PMID: 37866534 DOI: 10.1016/j.envres.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Driven by the imperative need for sustainable and biodegradable materials, this study focuses on two pivotal aspects: cellulose extraction and dye removal. The alarming repercussions of non-biodegradable food packaging materials on health and the environment necessitate the exploration of viable alternatives. Herein, we embark on creating easily degradable biopolymer substitutes, achieved through innovative crafting of a biodegradable cellulose sheet sourced from extracted cellulose. Concurrently, the significant environmental and health hazards posed by textile industry discharge of wastewater laden with persistent dyes demand innovative treatment strategies. This study extensively investigated four distinct methods of cellulose extraction from water hyacinth, a complex aquatic weed. The functional groups, crystallinity index, thermal stability, thermal effects, and morphology of the extracted cellulose were characterized by FTIR, XRD, TGA, DSC, and SEM. This exploration yielded a notable outcome, as the most promising yield (39.4 ± 0.02% w/w) emerged using 2% sodium chlorite and 2% glacial acetic acid as bleaching agents, surpassing other methods. Building on this foundational cellulose extraction process, the extracted fibers were transformed into highly biodegradable cellulose sheets, outlining conventional packaging materials. Moreover, these cellulose sheets exhibit exceptional efficacy in adsorbing reactive red dye, with the adsorption capacity of 71.43 mg/g by following pseudo-second kinetics. This study establishes an economically viable avenue for repurposing challenging aquatic weeds into commercially valuable biopolymers. The potential of these sheets for dye removal, coupled with their innate biodegradability, opens auspicious avenues for broader applications encompassing commercial wastewater treatment procedures.
Collapse
Affiliation(s)
- Adhithya Sankar Santhosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India.
| | - Sapthami Kariyadan
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharb
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, 51006, Estonia.
| |
Collapse
|
3
|
Deshmukh M, Pathan A. Transformations of bamboo into bioethanol through biorefinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3343-3360. [PMID: 38103136 DOI: 10.1007/s11356-023-31510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The increasing demand for energy has prompted scholars to research alternative energy sources. Bamboo is a species of woody perennial grass that belongs to the Gramineae family and the Bambuseae subfamily. It could be considered a possible lignocellulosic substrate for the production of bioethanol due to its favourable environmental effects and increased yearly biomass yield. Non-renewable fossil fuels cannot provide enough energy to meet the needs of contemporary societies. Among the various alternative energy sources, bioethanol has drawn a lot of attention from people all around the world. This paper reviews the cost and process parameters for the synthesis of bioethanol from bamboo. This review aims to increase the effectiveness of the entire ethanol production process by focusing on pretreatment, enzymatic hydrolysis, and fermentation. The emphasis of this review is on the efficient process for producing bioethanol while maintaining environmental sustainability. When compared to other NaOH pretreatment techniques, bamboo substrates prepared with NaOH and ultra-high-pressure explosion (UHPE) exhibit higher enzymatic hydrolyzability when processed under optimal conditions, such as 100 MPa, 121 °C, and 70 rpm for 2 h, yielding 89.7-95.1% ethanol after 24 h. The article lists the bamboo species responsible for creating each product, making it straightforward for producers to study and select the species based on whatever value-added product they wish to produce bioethanol with different parameters.
Collapse
Affiliation(s)
- Minal Deshmukh
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Aadil Pathan
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India.
| |
Collapse
|
4
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
5
|
Wu Y, Li X, Li F, Ling Z, Meng Y, Chen F, Ji Z. Promising seawater hydrothermal combining electro-assisted pretreatment for corn stover valorization within a biorefinery concept. BIORESOURCE TECHNOLOGY 2022; 351:127066. [PMID: 35351556 DOI: 10.1016/j.biortech.2022.127066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, for the first time, seawater hydrothermal (SH) pretreatment combining subsequent electrogenerated alkaline hydrogen peroxide (EAHP) pretreatment was proposed to achieve an effective fractionation of corn stover into high value-added products. During SH pretreatment, complex ions in natural seawater (Mg2+, Ca2+ and Cl-) were used to promote depolymerization of xylan into xylo-oligosaccharides with 49.37% yield (190 °C,40 min), 18.52% higher than that of deionized water. Subsequent EAHP treatment not only provided a green and economical way to produce hydrogen peroxide but also synchronously realized satisfied delignification (94.91%). The integrated pretreatment resulted in 91.16% of glucose yield, which was about 5.6 times more than that of unpretreated corn stover. In addition, the recovered lignin fraction which has a potential application in functional materials were investigated by FTIR, 2D-HSQC NMR and GPC. In short, this work provided a novel and environmentally-friendly strategy for biorefinery-based fractionation of corn stover.
Collapse
Affiliation(s)
- Yue Wu
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinting Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fucheng Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Meng
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fushan Chen
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
7
|
Ji Z, Wu Y, Li X, Wang Y, Ling Z, Meng Y, Lu P, Chen F. Electrogenerated alkaline hydrogen peroxide pretreatment of waste wheat straw to enhance enzymatic hydrolysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Zhang F, Lan W, Li Z, Zhang A, Tang B, Wang H, Wang X, Ren J, Liu C. Co-production of functional xylo-oligosaccharides and fermentable sugars from corn stover through fast and facile ball mill-assisted alkaline peroxide pretreatment. BIORESOURCE TECHNOLOGY 2021; 337:125327. [PMID: 34118741 DOI: 10.1016/j.biortech.2021.125327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to develop a feasible ball mill-assisted alkaline peroxide pretreatment followed by stepwise hydrolysis to improve the yield of xylo-oligosaccharides (XOS) and fermentable sugars. The hydrogen peroxide charge, ball-milling time, and solid-to-liquid ratio affected the compositions, particle sizes, morphology, and crystallinity of the corn stover, directly improving the following hydrolytic efficiency. The optimal pretreatment was with 0.45 g/g (H2O2: substrate) and 1:3 solid-to-liquid ratio (w/v) for 1.0 h ball-milling, resulting in 84.29% delignification. Physicochemical properties of the pretreated samples were characterized and their correlations to the enzymatic hydrolysis were revealed. Compared with one-step cellulase hydrolysis, the two-step xylanase-cellulase hydrolysis of the pretreated corn stover showed significant advance in preparing XOS, producing 69.65% (on the base of xylan content in pretreated sample) of XOS, along with 20.55% xylose, 68.94% glucose, and 21.15% gluco-oligosaccharides. The yield of XOS was 2-7 times higher than those in previous studies.
Collapse
Affiliation(s)
- Fulong Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zengyong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Baoling Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huihui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Comparative genomic and secretomic characterisation of endophytic Bacillus velezensis LC1 producing bioethanol from bamboo lignocellulose. Arch Microbiol 2021; 203:3089-3099. [PMID: 33792738 DOI: 10.1007/s00203-021-02306-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
Bacillus is an excellent organic matter degrader, and it has exhibited various abilities required for lignocellulose degradation. Several B. velezensis strains encode lignocellulosases, however their ability to efficiently transform biomass has not been appreciated. In the present study, through the comparative genomic analysis of the whole genome sequences of 21 B. velezensis strains, CAZyome related to lignocellulose degradation was identified and their similarities and differences were compared. Subsequently, the secretome of B. velezensis LC1 by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were identified and confirmed that a considerable number of proteins were involved in lignocellulose degradation. Moreover, after 6-day treatment, the degradation efficiency of the B. velezensis LC1 toward cellulose, hemicellulose and lignin were 59.90%, 75.44% and 23.41%, respectively, the hydrolysate was subjected to ethanol fermentation with Saccharomyces cerevisiae and Escherichia coli KO11, yielded 10.44 g/L ethanol after 96 h. These results indicate that B. velezensis LC1 has the ability to effectively degrade bamboo lignocellulose and has the potential to be used in bioethanol production.
Collapse
|
10
|
Luo L, Yuan X, Zhang S, Wang X, Li M, Wang S. Effect of Pretreatments on the Enzymatic Hydrolysis of High-Yield Bamboo Chemo-Mechanical Pulp by Changing the Surface Lignin Content. Polymers (Basel) 2021; 13:787. [PMID: 33806542 PMCID: PMC7961962 DOI: 10.3390/polym13050787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide chemo-mechanical pulp (APMP), sulfonated chemo-mechanical pulp (SCMP), and chemical thermomechanical pulp (CTMP) were used as raw materials to explore the effects of hydrogen peroxide (HP), Fenton pretreatment (FP), and ethanol pretreatment (EP) on the enzymatic hydrolysis of high-yield bamboo mechanical pulp (HBMP). The surface lignin distribution and contents of different HBMPs were determined using confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The correlation between the surface lignin and the enzymatic hydrolysis of HBMP was also investigated. The residue of enzymatic hydrolysis was used to adsorb methylene blue (MB). The results showed that the cracks and fine fibers on the surface of APMP, SCMP, and CTMP increased after FP, when compared to HP and EP. The total removal content of hemicellulose and lignin in SCMP after FP was higher than with HP and EP. Compared to SCMP, the crystallinity increased by 15.4%, and the surface lignin content of Fenton-pretreated SCMP decreased by 11.7%. The enzymatic hydrolysis efficiency of HBMP after FP was higher than with HP and EP. The highest enzymatic hydrolysis of Fenton-pretreated SCMP was 49.5%, which was higher than the enzymatic hydrolysis of Fenton-pretreated APMP and CTMP. The removal rate of MB reached 94.7% after the adsorption of the enzymatic hydrolysis residue of SCMP. This work provides an effective approach for a high value-added utilization of high-yield bamboo pulp.
Collapse
Affiliation(s)
- Lianxin Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (L.L.); (X.Y.); (S.Z.); (X.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Xiaojun Yuan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (L.L.); (X.Y.); (S.Z.); (X.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Sheng Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (L.L.); (X.Y.); (S.Z.); (X.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Xuchong Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (L.L.); (X.Y.); (S.Z.); (X.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Mingfu Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (L.L.); (X.Y.); (S.Z.); (X.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Abstract
The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
Collapse
|
12
|
Dai Y, Hu B, Yang Q, Nie L, Sun D. Comparison of the effects of different pretreatments on the structure and enzymatic hydrolysis of Miscanthus. Biotechnol Appl Biochem 2021; 69:548-557. [PMID: 33608903 DOI: 10.1002/bab.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Miscanthus is regarded as a desired bioenergy crop with enormous lignocellulose residues for biofuels and other chemical products. In this study, the effect of different pretreatments (including microwave, NaOH, CaO, and microwave + NaOH/CaO) on sugar yields was investigated, leading to largely varied hexose yields at 4.0-73.4% (% cellulose) released from enzymatic hydrolysis of pretreated Miscanthus residues. Among them, the highest yield of 73.4% for hexoses was obtained from 12% NaOH (w/v) solution pretreatment, whereas 1% CaO (w/w) and microwave pretreatment resulted in a lower hexose yield than the control (without pretreatment). The sugar yield from microwave followed with 1% NaOH pretreatment was 4.3 times higher than that of microwave followed with 1% CaO. However, the enzymatic hydrolysis efficiencies of the sample were 15.2% and 58.5% under microwave pretreatment followed by 12% NaOH or 12.5% CaO, respectively, which were lower than those of the same concentration of alkali (NaOH and CaO) pretreatments. To investigate the mechanism of varied enzymatic saccharification under different pretreatments, the changes in the surface structure and porosity of the Miscanthus-pretreated lignocelluses were studied by means of Fourier transform infrared, Congo red staining, and scanning electron microscopy analysis. The results show that the different pretreatments destroy the cell wall cladding structure and reduce the bonding force between cellulose, hemicellulose, and lignin to different degrees, therefore increasing the accessibility of cellulose and enhancing cellulose digestion.
Collapse
Affiliation(s)
- Yongyong Dai
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Bing Hu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Qiaomei Yang
- College of Plant science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Longhui Nie
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| | - Dan Sun
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
13
|
Yan X, Cheng JR, Wang YT, Zhu MJ. Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. BIORESOURCE TECHNOLOGY 2020; 301:122756. [PMID: 31981908 DOI: 10.1016/j.biortech.2020.122756] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Pretreatment process plays a key role in biofuel production from lignocellulosic feedstocks. A study on dilute NaOH pretreatment supplemented with H2O2 under mild condition was conducted to overcome the recalcitrance of grass waste (GW). The optimized process could selectively increase lignin removal (73.2%), resulting in high overall recovery of holocellulose (73.8%) as well as high enzymolysis efficiency (83.5%) compared to H2O2 or NaOH pretreatment. The analyses by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) revealed that supplementary H2O2 disrupted the structure of GW to facilitate the removal of lignin by NaOH, and exhibited synergistic effect on lignin removal and enzymolysis with dilute NaOH. Moreover, high titer of ethanol (100.7 g/L) was achieved by SSCF on 30% (w/v) pretreated GW loading. The present study suggests that the established synergistic pretreatment is a simple, efficient, and promising process for GW biorefinery.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| | - Jing-Rong Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China.
| |
Collapse
|
14
|
Huang C, Fang G, Yu L, Zhou Y, Meng X, Deng Y, Shen K, Ragauskas AJ. Maximizing enzymatic hydrolysis efficiency of bamboo with a mild ethanol-assistant alkaline peroxide pretreatment. BIORESOURCE TECHNOLOGY 2020; 299:122568. [PMID: 31874450 DOI: 10.1016/j.biortech.2019.122568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 05/24/2023]
Abstract
To overcome the delignification saturation point in traditional alkaline hydrogen peroxide pretreatment (AHP), a powerful modified AHP delignification methodology was established by introducing ethanol into the system. The pretreatment caused significant lignin removal of bamboo at elevated pretreatment temperature with the highest lignin removal reaching 80.0% at 100 °C, higher than that (74.9% lignin removal) in pretreatment without the ethanol assistance. In addition, a certain amount of carbohydrates was also solubilized during the process whose recovery was 83.3% (glucan) and 67.6% (hemicellulose), respectively. The pretreated solid exhibited excellent enzymatic digestibility, with hydrolysis yields of ~100% and 95.7% for glucan and xylan, respectively. Our studies further indicate that this delignification methodology is versatile for hardwood and herbaceous plants, but does not perform well on softwood.
Collapse
Affiliation(s)
- Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Longxiang Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Yongjun Deng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
15
|
Wang J, Wang H, Ye Z, Chizaram EP, Jiang J, Liu T, Sun F, Zhang S. Mold resistance of bamboo after laccase-catalyzed attachment of thymol and proposed mechanism of attachment. RSC Adv 2020; 10:7764-7770. [PMID: 35492150 PMCID: PMC9049941 DOI: 10.1039/d0ra00315h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Laccase-catalyzed attachment of functional molecules onto the surface of bamboo represents an alternative, green approach to improve performance. Although treatment of bamboo with thymol improved resistance to mold, using laccase to fix the same concentration of thymol to the surface of the bamboo could increase both the antifungal activity and resistance to leaching. Leaching of thymol was reduced by as much as 48.4% when laccase was used in thymol fixation. To make clear the mechanisms of fixation, reaction of thymol catalyzed with laccase, was investigated using Fourier-transform infrared spectroscopy, 1H-NMR, high-resolution mass spectrometry and thermogravimetric analysis, respectively. Results show that thymol oligomer (l-thymol) was formed with ether linkages, which resist water leaching. Although further confirmatory studies are needed, it seems that ether linkages were the main connection of thymol to lignin. This study demonstrates that laccase catalysis is a promising strategy to functionalize the surface of bamboo in order to bestow new properties suitable for a wide range of applications. Schematic diagram of laccase-catalysed fixation of natural antimicrobial phenol to bamboo.![]()
Collapse
Affiliation(s)
- Jie Wang
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Hui Wang
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Zelin Ye
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Enyinwa Patience Chizaram
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Jun Jiang
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Tingsong Liu
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Fangli Sun
- School of Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University Hangzhou Zhejiang 311300 P. R. China
| | - Shaoyong Zhang
- College of Life Science, Huzhou University Huzhou 313000 P. R. China
| |
Collapse
|
16
|
He L, Chen N, Lv H, Wang C, Zhou W, Zhang Q, Chen X. Ensiling characteristics, physicochemical structure and enzymatic hydrolysis of steam-exploded hippophae: Effects of calcium oxide, cellulase and Tween. BIORESOURCE TECHNOLOGY 2020; 295:122268. [PMID: 31675519 DOI: 10.1016/j.biortech.2019.122268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
To find a comprehensive way to enhance the utilizability of steam-exploded hippophae, calcium oxide (CaO) preimpregnation, cellulase-added storage and saccharification with addition of Tween 20 were investigated in this study. Both CaO preimpregnation and cellulase addition promoted the ensiling fermentation of anaerobically stored steam-exploded hippophae indicated by lower cellulose proportion and higher organic acids content, but led to the decrease of saccharification yield by 11.83% and 46.77-51.22%, respectively. When taking into account of organic acids being utilizable energy source, storing with addition of cellulase enhanced the utilizability of the materials in whole. Moreover, the addition of Tween 20 enhanced saccharification yield of the steam-exploded hippophae by 26.69-45.25%. Additionally, FTIR and XRD spectra clearly illustrated the structural alteration during storage. It is concluded that storing with addition of cellulase and hydrolyzing with addition of Tween 20 can enhance the utilizability of steam-exploded hippophae.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Na Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Amin MM, Taheri E, Bina B, van Ginkel SW, Ghasemian M, Puad NIM, Fatehizadeh A. Electron flow of biological H 2 production by sludge under simple thermal treatment: Kinetic study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109461. [PMID: 31499462 DOI: 10.1016/j.jenvman.2019.109461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/06/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Mixed culture sludge has been widely used as a microbial consortium for biohydrogen production. Simple thermal treatment of sludge is usually required in order to eliminate any H2-consuming bacteria that would reduce H2 production. In this study, thermal treatment of sludge was carried out at various temperatures. Electron flow model was then applied in order to assess community structure in the sludge upon thermal treatment for biohydrogen production. Results show that the dominant electron sink was acetate (150-217 e- meq/mol glucose). The electron equivalent (e- eq) balances were within 0.8-18% for all experiments. Treatment at 100 °C attained the highest H2 yield of 3.44 mol H2/mol glucose from the stoichiometric reaction. As the treatment temperature increased from 80 to 100 °C, the computed acetyl-CoA and reduced form of ferredoxin (Fdred) concentrations increased from 13.01 to 17.34 e- eq (1.63-2.17 mol) and 1.34 to 4.18 e- eq (0.67-2.09 mol), respectively. The NADH2 balance error varied from 3 to 10% and the term e-(Fd↔NADH2) (m) in the NADH2 balance was NADH2 consumption (m = -1). The H2 production was mainly via the Fd:hydrogenase system and this is supported with a good NADH2 balance. Using the modified Gompertz model, the highest maximum H2 production potential was 1194 mL whereas the maximum rate of H2 production was 357 mL/h recorded at 100 °C of treatment.
Collapse
Affiliation(s)
- Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan, Iran
| | - Bijan Bina
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Steven W van Ginkel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, GA 30332, USA
| | - Mohammad Ghasemian
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noor Illi Mohamad Puad
- Bioprocess and Molecular Engineering Research Unit (BPMERU), Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Ali Fatehizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Yuan Z, Singh SK, Bals B, Hodge DB, Hegg EL. Integrated Two-Stage Alkaline–Oxidative Pretreatment of Hybrid Poplar. Part 2: Impact of Cu-Catalyzed Alkaline Hydrogen Peroxide Pretreatment Conditions on Process Performance and Economics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
| | - Sandip Kumar Singh
- Department of Chemical & Biological Engineering, Montana State University, 306 Cobleigh Hall, Bozeman, Montana 59717, United States
| | - Bryan Bals
- Michigan Biotechnology Institute, 3815 Technology Boulevard, Lansing, Michigan 48910, United States
| | - David B. Hodge
- Department of Chemical & Biological Engineering, Montana State University, 306 Cobleigh Hall, Bozeman, Montana 59717, United States
- Division of Sustainable Process Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Eric L. Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Alkali and glycerol pretreatment of West African biomass for production of sugars and ethanol. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhang H, Huang S, Wei W, Zhang J, Xie J. Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:107. [PMID: 31073331 PMCID: PMC6498686 DOI: 10.1186/s13068-019-1454-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Due to the intact structure of lignocellulosic biomass, pretreatment was a prerequisite to improve the enzymatic hydrolysis by disrupting the recalcitrant lignocellulose and increasing the accessibility of cellulose to enzyme. In this study, an alkaline hydrogen peroxide (AHP) pretreatment of sugarcane bagasse with various loadings of H2O2 (1.25-6.25 wt%) at temperatures of 60-160 °C was proposed to degrade hemicellulose/lignin and improve the enzymatic digestibility. RESULTS It was found that increasing H2O2 loadings during pretreatment lead to the enhancement of substrate digestibility, whereas the alkali (only NaOH)-pretreated solid generated higher glucose yield than that pretreated under AHP pretreatment with lower loading of H2O2. This enhancement of enzymatic digestibility was due to the degradation of hemicellulose and lignin. Furthermore, Tween 80 was added to promote enzymatic digestibility, however, the increased yields were different with various substrates and hydrolysis time. The highest glucose yield of 77.6% was obtained after pretreatment at 160 °C for 60 min with 6.25% H2O2 and the addition of Tween 80, representing 89.1% of glucose in pretreated substrate. CONCLUSIONS This study demonstrated that the AHP pretreatment could greatly enhance the enzymatic saccharification. The addition of Tween 80 played remarkable performances in promoting the glucose yield during enzymatic hydrolysis by stabilizing and protecting the enzyme activity. This study provided an economical feasible and gradual process for the generation of glucose, which will be subsequently converted to bioethanol and bio-chemicals.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou, 510640 People’s Republic of China
| | - Shihang Huang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Weiqi Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|
21
|
Sinjaroonsak S, Chaiyaso T, H-Kittikun A. Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus Strain TC13W Using Oil Palm Empty Fruit Bunch and Tuna Condensate as Substrates. Appl Biochem Biotechnol 2019; 189:76-86. [PMID: 30868383 DOI: 10.1007/s12010-019-02986-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 12/01/2022]
Abstract
The modified medium composed of the alkaline-pretreated oil palm empty fruit bunch (APEFB) and tuna condensate powder was used for cellulase and xylanase productions by Streptomyces thermocoprophilus strain TC13W. The APEFB contained 74.46% (w/w) cellulose, 15.72% (w/w) hemicellulose, and 6.40% (w/w) lignin. The tuna condensate powder contained 55.49% (w/w) protein and 11.05% (w/w) salt. In the modified medium with only 6.75 g/l tuna condensate powder, 10 g/l APEFB, and 0.5 g/l Tween 80, S. thermocoprophilus strain TC13W produced cellulase 4.9 U/ml and xylanase 9.0 U/ml. The enzyme productions in the modified medium were lower than cellulase (6.0 U/ml) and xylanase (12.0 U/ml) productions in the complex medium (CaCl2 0.1, MgSO4·7H2O 0.1, KH2PO4 0.5, K2HPO4 1.0, NaCl 0.2, yeast extract 5.0, NH4NO3 1.0, Tween 80 0.5). When tuna condensate powder in the modified medium was reduced to 5.0 g/l and Tween 80 was increased to 1.5 g/l, S. thermocoprophilus strain TC13W produced cellulase and xylanase activities of 9.1 and 12.1 U/ml, respectively. This study shows that the cost of enzyme production could be reduced by using pretreated EFB and tuna condensate as a carbon and a nitrogen source, respectively.
Collapse
Affiliation(s)
- Santat Sinjaroonsak
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand.
| | - Thanongsak Chaiyaso
- Department of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aran H-Kittikun
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
22
|
Two-Step Pretreatment of Corn Stover Silage Using Non-ionic Surfactant and Ferric Nitrate for Enhancing Sugar Recovery and Enzymatic Digestibility of Cellulose. Appl Biochem Biotechnol 2019; 189:65-75. [DOI: 10.1007/s12010-019-02988-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
|
23
|
Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14463-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Yang Y, Yang J, Cao J, Wang Z. Pretreatment with concurrent UV photocatalysis and alkaline H 2O 2 enhanced the enzymatic hydrolysis of sisal waste. BIORESOURCE TECHNOLOGY 2018; 267:517-523. [PMID: 30048927 DOI: 10.1016/j.biortech.2018.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
This work studied a concurrent UV photocatalysis and alkaline H2O2 pretreatment (UHP) to enhance the subsequent enzymatic hydrolysis of sisal waste in comparison with alkaline H2O2 pretreatment (AHP). An optimal condition was identified for UHP at H2O2 charge 0.1 g/g dried sisal waste, pH 10.0, and UV radiation for 6 h. Under this condition, UHP led to a delignification rate of 76.6%, a conversion to reducing sugar at 71.2%, and a conversion to glucose at 91.6%, respectively. XRD, FT-IR and SEM analysis showed an increase in crystalline degree and significant changes in the structure of sisal during UHP. The current study implicates that UHP is more efficient than AHP in pretreating sisal waste, with reduced H2O2 charge, shortened pretreatment time, and enhanced enzymatic digestibility.
Collapse
Affiliation(s)
- Yishuo Yang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China.
| |
Collapse
|
25
|
Luo C, Li Y, Liao H, Yang Y. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:292. [PMID: 30386429 PMCID: PMC6204003 DOI: 10.1186/s13068-018-1291-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bamboo weevil Cyrtotrachelus buqueti, which is considered a pest species, damages bamboo shoots via its piercing-sucking mode of feeding. C. buqueti is well known for its ability to transform bamboo shoot biomass into nutrients and energy for growth, development and reproduction with high specificity and efficacy of bioconversion. Woody bamboo is a perennial grass that is a potential feedstock for lignocellulosic biomass because of its high growth rate and lignocellulose content. To verify our hypothesis that C. buqueti efficiently degrades bamboo lignocellulose, we assessed the bamboo lignocellulose-degrading ability of this insect through RNA sequencing for identifying a potential route for utilisation of bamboo biomass. RESULTS Analysis of carbohydrate-active enzyme (CAZyme) family genes in the developmental transcriptome of C. buqueti revealed 1082 unigenes, including 55 glycoside hydrolases (GH) families containing 309 GHs, 51 glycosyltransferases (GT) families containing 329 GTs, 8 carbohydrate esterases (CE) families containing 174 CEs, 6 polysaccharide lyases (PL) families containing 11 PLs, 8 auxiliary activities (AA) families containing 131 enzymes with AAs and 17 carbohydrate-binding modules (CBM) families containing 128 CBMs. We used weighted gene co-expression network analysis to analyse developmental RNA sequencing data, and 19 unique modules were identified in the analysis. Of these modules, the expression of MEyellow module genes was unique and the module included numerous CAZyme family genes. CAZyme genes in this module were divided into two groups depending on whether gene expression was higher in the adult/larval stages or in the egg/pupal stages. Enzyme assays revealed that cellulase activity was highest in the midgut whereas lignin-degrading enzyme activity was highest in the hindgut, consistent with findings from intestinal gene expression studies. We also analysed the expression of CAZyme genes in the transcriptome of C. buqueti from two cities and found that several genes were also assigned to CAZyme families. The insect had genes and enzymes associated with lignocellulose degradation, the expression of which differed with developmental stage and intestinal region. CONCLUSION Cyrtotrachelus buqueti exhibits lignocellulose degradation-related enzymes and genes, most notably CAZyme family genes. CAZyme family genes showed differences in expression at different developmental stages, with adults being more effective at cellulose degradation and larvae at lignin degradation, as well as at different regions of the intestine, with the midgut being more cellulolytic than the hindgut. This degradative system could be utilised for the bioconversion of bamboo lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|
26
|
Yuan Z, Li G, Hegg EL. Enhancement of sugar recovery and ethanol production from wheat straw through alkaline pre-extraction followed by steam pretreatment. BIORESOURCE TECHNOLOGY 2018; 266:194-202. [PMID: 29982039 DOI: 10.1016/j.biortech.2018.06.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
To improve sugar recovery and ethanol production from wheat straw, a sequential two-stage pretreatment process combining alkaline pre-extraction and acid catalyzed steam treatment was investigated. The results showed that alkaline pre-extraction using 8% (w/w) sodium hydroxide at 80 °C for 90 min followed by steam pretreatment with 3% (w/w) sulfur dioxide at 151 °C for 16 min was sufficient to prepare a substrate that could be efficiently hydrolyzed at high solid loadings. Moreover, alkaline pre-extraction reduced the process severity of steam pretreatment and decreased the generation of inhibitory compounds. During enzymatic hydrolysis, increasing solid loading decreased the yield of monomeric sugars. Enzymatic hydrolysis at 25% (w/v) solid loading, the yields of approximately 80% of glucose and 65% of xylose could be reached with an enzyme dosage of 25 mg protein/g glucan. Following fermentation of hydrolysate with sugar concentration of approximately 120 g/L, an ethanol concentration of 54.5 g/L was achieved.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Guodong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Wang H, Wang X, Cui Y, Xue Z, Ba Y. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. BIORESOURCE TECHNOLOGY 2018; 263:444-449. [PMID: 29772506 DOI: 10.1016/j.biortech.2018.05.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Slow pyrolysis of bamboo was conducted at 400-600 °C and pyrolysis products were characterized with FTIR, BET, XRD, SEM, EDS and GC to establish a pyrolysis product yield prediction model and biochar formation mechanism. Pyrolysis biochar yield was predicted based on content of cellulose, hemicellulose and lignin in biomass with their carbonization index of 0.20, 0.35 and 0.45. The formation mechanism of porous structure in pyrolysis biochar was established based on its physicochemical property evolution and emission characteristics of pyrolysis gas. The main components (cellulose, hemicellulose and lignin) had different pyrolysis or chemical reaction pathways to biochar. Lignin had higher aromatic structure, which resulted higher biochar yield. It was the main biochar precursor during biomass pyrolysis. Cellulose was likely to improve porous structure of pyrolysis biochar due to its high mass loss percentage. Higher pyrolysis temperatures (600 °C) promoted inter- and intra-molecular condensation reactions and aromaticity in biochar.
Collapse
Affiliation(s)
- Huihui Wang
- Institute of Energy Conservation and Low Carbon Technology, Shenwu Technology Group Corp, Shenniu Road 18, Changping District, Beijing, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin Wang
- Institute of Energy Conservation and Low Carbon Technology, Shenwu Technology Group Corp, Shenniu Road 18, Changping District, Beijing, PR China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhongcai Xue
- Institute of Energy Conservation and Low Carbon Technology, Shenwu Technology Group Corp, Shenniu Road 18, Changping District, Beijing, PR China
| | - Yuxin Ba
- Institute of Energy Conservation and Low Carbon Technology, Shenwu Technology Group Corp, Shenniu Road 18, Changping District, Beijing, PR China
| |
Collapse
|
28
|
Yuan Z, Wen Y, Li G. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. BIORESOURCE TECHNOLOGY 2018; 259:228-236. [PMID: 29567594 DOI: 10.1016/j.biortech.2018.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H2O2)/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA.
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guodong Li
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
29
|
Multiscale analysis of bamboo deformation mechanisms following NaOH treatment using X-ray and correlative microscopy. Acta Biomater 2018; 72:329-341. [PMID: 29627678 DOI: 10.1016/j.actbio.2018.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
For hundreds of years, bamboo has been employed for a variety of applications ranging from load-bearing structures to textiles. Thanks to its hierarchical structure that is functionally graded and naturally optimised, bamboo displays a variation in properties across its stem that ensures exceptional flexural performance. Often, alkaline solutions are employed for the treatment of bamboo in order to alter its natural elastic behaviour and make it suitable for particular applications. In this work we study the effect of NaOH solutions of five different concentrations (up to 25%) on the elastic properties of bamboo. By exploiting the capabilities of modern experimental techniques such as in situ synchrotron X-ray scattering and Digital Image Correlation, we present detailed analysis of the deformation mechanisms taking place in the main constituents of bamboo, i.e. fibres and matrix (Parenchyma). The principal achievement of this study is the elucidation of the deformation mechanisms at the fibre scale, where the relative sliding of fibrils plays a crucial role in the property modification of the whole bamboo stem. Furthermore, we shed light on the parenchyma toughness variation as a consequence of alkali treatments. STATEMENT OF SIGNIFICANCE Alkaline solutions are often employed for the treatment of bamboo in order to alter its natural elastic behaviour. In this work we study the effect of alkaline solutions on the elastic properties of bamboo. Using state of the art experimental techniques allowed shedding light on the deformation mechanisms occurring in the bamboo main constituents, i.e. fibres and matrix (parenchyma cells). Enhancement of fibre stiffness was experienced when up to 20% NaOH solution was employed, while for higher concentration a decay was observed. This effect was imputed to the modification of adhesion between fibrils induced by disruption of ligand elements (e.g. lignin). Modification of the matrix toughness was also experienced, that indicated an improved resistance to cracking when the concentration of NaOH is 25%, while reduction of toughness was revealed for lower concentrations.
Collapse
|
30
|
Liu T, Li Z. An electrogenerated base for the alkaline oxidative pretreatment of lignocellulosic biomass to produce bioethanol. RSC Adv 2017. [DOI: 10.1039/c7ra08101d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrogenerated base (EGB), an alternative source for alkaline pretreatment, can achieve the same performance as NaOH.
Collapse
Affiliation(s)
- Tongjun Liu
- Department of Bioengineering
- Qilu University of Technology
- Jinan
- China
| | - Zhenglong Li
- Department of Chemical Engineering and Materials Science
- Michigan State University
- East Lansing
- USA
- Department of Biosystems and Agricultural Engineering
| |
Collapse
|