1
|
Huang J, Xie X, Zheng W, Xu L, Yan J, Wu Y, Yang M, Yan Y. In silico design of multipoint mutants for enhanced performance of Thermomyces lanuginosus lipase for efficient biodiesel production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:33. [PMID: 38402206 PMCID: PMC10894483 DOI: 10.1186/s13068-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.
Collapse
Affiliation(s)
- Jinsha Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wanlin Zheng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Xu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Yang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Madubuike H, Ferry N. Enhanced Activity and Stability of an Acetyl Xylan Esterase in Hydrophilic Alcohols through Site-Directed Mutagenesis. Molecules 2023; 28:7393. [PMID: 37959811 PMCID: PMC10647838 DOI: 10.3390/molecules28217393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Current demands for the development of suitable biocatalysts showing high process performance is stimulated by the need to replace current chemical synthesis with cleaner alternatives. A drawback to the use of biocatalysts for unique applications is their low performance in industrial conditions. Hence, enzymes with improved performance are needed to achieve innovative and sustainable biocatalysis. In this study, we report the improved performance of an engineered acetyl xylan esterase (BaAXE) in a hydrophilic organic solvent. The structure of BaAXE was partitioned into a substrate-binding region and a solvent-affecting region. Using a rational design approach, charged residues were introduced at protein surfaces in the solvent-affecting region. Two sites present in the solvent-affecting region, A12D and Q143E, were selected for site-directed mutagenesis, which generated the mutants MUT12, MUT143 and MUT12-143. The mutants MUT12 and MUT143 reported lower Km (0.29 mM and 0.27 mM, respectively) compared to the wildtype (0.41 mM). The performance of the mutants in organic solvents was assessed after enzyme incubation in various strengths of alcohols. The mutants showed improved activity and stability compared to the wild type in low strengths of ethanol and methanol. However, the activity of MUT143 was lost in 40% methanol while MUT12 and MUT12-143 retained over 70% residual activity in this environment. Computational analysis links the improved performance of MUT12 and MUT12-143 to novel intermolecular interactions that are absent in MUT143. This work supports the rationale for protein engineering to augment the characteristics of wild-type proteins and provides more insight into the role of charged residues in conferring stability.
Collapse
Affiliation(s)
- Henry Madubuike
- School of Science Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Natalie Ferry
- School of Science Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
3
|
Alonazi M, Al-Diahan SK, Alzahrani ZR, Ben Bacha A. Combined immobilized lipases for effective biodiesel production from spent coffee grounds. Saudi J Biol Sci 2023; 30:103772. [PMID: 37663395 PMCID: PMC10470282 DOI: 10.1016/j.sjbs.2023.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
This work describes the enzymatic transesterification of the oil extracted from SCGs for synthesis of biodiesel as a promising alternative to diesel fuels based on petroleum. Biocatalysts from various sources were tested for biodiesel synthesis using coffee oil among which CaCO3- immobilized Staphylococcus aureus and Bacillus stearothermophilus showed the highest conversion yields (61 ± 2.64% and 64.3 ± 1.53%, respectively) in 4 h. In further optimizing reaction parameters, methanol to oil molar ratio, biocatalyst quantity, water content, as well as incubation time and temperature markedly improved oil-to-biodiesel conversion up to 99.33 ± 0.57 % in a solvent free reaction after 12 h at 55 °C. A mixture of inexpensive CaCO3-immobilized bacterial lipases at a 1:1 ratio was the best environment-friendly catalyst for biofuel synthesis as well as the ideal trade-off between conversion and cost. Obtained coffee biodiesel remained stable beyond 40 days at ambient storage conditions and its chemical characteristics were comparable to those of other known biodiesels according to the European requirements (EN14214). Collectively, SCGs, after oil extraction, could be an ideal substrate for the production of an environment-friendly biodiesel by using appropriate mixture of CaCO3-immobilized lipases.
Collapse
Affiliation(s)
- Mona Alonazi
- Biochemistry Department, College of Sciences, King Saud University, P.O Box 22455, Riyadh, Saudi Arabia
| | - Sooad K. Al-Diahan
- Biochemistry Department, College of Sciences, King Saud University, P.O Box 22455, Riyadh, Saudi Arabia
| | - Zaenab R.A. Alzahrani
- Biochemistry Department, College of Sciences, King Saud University, P.O Box 22455, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Sciences, King Saud University, P.O Box 22455, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
5
|
Martínez SAH, Melchor-Martínez EM, Hernández JAR, Parra-Saldívar R, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. FUEL 2022. [DOI: 10.1016/j.fuel.2021.122927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Abstract
The viability of large-scale biodiesel production ultimately boils down to its cost of commercialisation despite other very important factors such as the negative environmental and health effects caused by the direct combustion of fossil diesel. How much each country’s economy will be influenced by the production of biodiesel will be determined by the commitment of various stakeholders to the much-needed transition from petroleum-based resources to renewable resources. Biodiesel production is largely determined by the cost of the feedstock (>70%) and this review focuses on the use of waste oil resources as biodiesel feedstock with a special focus on waste cooking oil (WCO). Generating value from waste oil provides an alternative waste management route as well as a positive environmental and economic contribution. The transesterification process for biodiesel production, its catalysis and some important technical and economic aspects are covered in this communication with a special focus on the South African framework. An overview of the current research and its implications going forward is discussed.
Collapse
|
8
|
Ponticorvo E, Iuliano M, Funicello N, De Pasquale S, Sarno M. Magnetic resonance imaging during the templated synthesis of mesoporous TiO2 supporting Pt nanoparticles for MOR. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Upgrading of Coffee Biocrude Oil Produced by Pyrolysis of Spent Coffee Grounds: Behavior of Fatty Acids in Supercritical Ethanol Reaction and Catalytic Cracking. Processes (Basel) 2021. [DOI: 10.3390/pr9050835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spent coffee grounds contain lipids (fatty acids) in addition to cellulose, hemicellulose, and lignin. The reaction process for upgrading biocrude oil produced from spent coffee grounds is different from that followed for upgrading biomass pyrolysis oil, such as processes that utilize sawdust. The feasibility of upgrading coffee biocrude oil through a supercritical ethanol reaction with plastic pyrolysis oil and through catalytic cracking for the improvement of the undesirable properties of biocrude oil, caused by the presence of oxygenated compounds, was evaluated. The initial oxygen content of the coffee biocrude oil was 16.9 wt%. The oil comprised a total content of 40.9% fatty acids, as found by analyzing the GC-MS peak area. After the supercritical ethanol reaction at 340 ∘C, the oxygen content was decreased to 9.9 wt%. When the MgNiMo/AC catalyst was applied to the supercritical reaction, the oxygen content was further decreased to 8.5 wt%. The esterification of the fatty acids in the biocrude oil with ethanol converted them to esters. After the supercritical reaction of coffee biocrude oil with plastic pyrolysis oil (1:2 (w/w)), the oxygen content was 6.4 wt%. After the catalytic cracking of the biocrude oil by Ni/MCM-41 at 400 ∘C, the fatty acids were converted to hydrocarbons, C9 to C21, and the oxygen content decreased to a final value of 2.8 wt%.
Collapse
|
10
|
Son EK, Yeom SH. Repeated Biodiesel Production Using a Cartridge Containing Solid Catalysts Manufactured from Waste Scallop Shells for Simultaneous Lipid Extraction and Transesterification Process. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Sukhbaatar B, Yoo B, Lim JH. Metal-free high-adsorption-capacity adsorbent derived from spent coffee grounds for methylene blue. RSC Adv 2021; 11:5118-5127. [PMID: 35424460 PMCID: PMC8694667 DOI: 10.1039/d0ra09550h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Heavy-metal-free carbon materials were prepared from spent coffee grounds (SCG) using the coupled KOH-urea and NaOH-urea as activating agents, and these were compared with SCG activation by the alkali salts alone. SCG was impregnated with the activating agents before being pyrolyzed at 800 °C under a N2 atmosphere. Characterization of the as-pyrolyzed carbon materials was performed by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and measurement of N2 adsorption-desorption isotherms. The carbon materials were utilized for the adsorption of methylene blue (MB) in aqueous solutions. Combining KOH and urea as activating agents resulted in the generation of pertinent SCG-derived carbon material properties, including a large surface area (1665.45 m2 g-1) and excellent MB adsorption capacity. Adsorption efficiencies were studied using adsorption kinetics (pseudo-first-order and pseudo-second-order) and adsorption isotherm (Langmuir, Freundlich, and Temkin) models. The influences of pH and temperature were investigated. The results of this work raise new possibilities for synthesizing carbon materials with high MB adsorption capacities from biowastes, via less-toxic, energy-saving conventional pyrolysis methods for water-treatment applications.
Collapse
Affiliation(s)
- Bayaraa Sukhbaatar
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Korea
| | - Bongyoung Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Korea
| | - Jae-Hong Lim
- Department of Materials Science and Engineering, Gachon University Seongnam-si 13120 Korea
| |
Collapse
|
12
|
Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts 2020. [DOI: 10.3390/catal10091025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The depletion of fossil fuel reserves and increased environmental concerns related to fossil fuel production and combustion has forced the global communities to search for renewable fuels. In this regard, microalgae-based biodiesel has been considered as one of the interesting alternatives. Biodiesel production from the cultivation of microalgae is eco-friendly and sustainable. Moreover, microalgae have several advantages over other bioenergy sources, including their good photosynthetic capacity and faster growth rates. The productivity of microalgae per unit land area is also significantly higher than that of terrestrial plants. The produced microalgae biomass is rich with high quality lipids, which can be converted into biodiesel by transesterification reactions. Generally, the transesterification reactions are carried out in the presence of a homogeneous or heterogeneous catalyst. The homogeneous catalysts have many disadvantages, including their single use, slow reaction rate and saponification issues due to the presence of fatty acids in the feedstock. The acidic nature of the homogeneous catalysts also causes equipment corrosion. On the other hand, the heterogeneous catalysts offer several advantages, including their reusability, higher reaction rate and selectivity, easy product/catalyst separation and low cost. Due to these facts, the development of solid phase transesterification catalysts have been receiving growing interest. The present review is focused on the use of heterogeneous catalysts for biodiesel production from microalgal oil as a reliable feedstock with a comparison to other available feedstocks. It also highlights optimal reaction conditions for maximum biodiesel yields, reusability of the solid catalysts, cost, and environmental impact. The superior lipid content of microalgae and the efficient concurrent esterification and transesterification of the solid acid−base catalysts can offer new advancements in biodiesel production.
Collapse
|
13
|
Li Q, Chen Y, Bai S, Shao X, Jiang L, Li Q. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis. Colloids Surf B Biointerfaces 2020; 188:110812. [DOI: 10.1016/j.colsurfb.2020.110812] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/22/2022]
|
14
|
Ciambelli P, La Guardia G, Vitale L. Nanotechnology for green materials and processes. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2020. [DOI: 10.1016/b978-0-444-64337-7.00007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Nguyen HC, Nguyen ML, Wang FM, Juan HY, Su CH. Biodiesel production by direct transesterification of wet spent coffee grounds using switchable solvent as a catalyst and solvent. BIORESOURCE TECHNOLOGY 2020; 296:122334. [PMID: 31698223 DOI: 10.1016/j.biortech.2019.122334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Spent coffee grounds (SCGs) are a promising material for sustainable preparation of biodiesel. This study proposed a new approach for biodiesel synthesis from wet SCGs using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as both a green solvent and catalyst. The optimal reaction conditions were determined as a methanol amount of 6.25 mL/g of wet SCGs, DBU amount of 14.46 mL/g of wet SCGs, temperature of 60.2 °C, and reaction time of 28.65 min through response surface methodology. Under these conditions, the maximum biodiesel yield was 97.18%. Notably, DBU polarity could be regulated reversibly, facilitating its reusability and a simple process for product separation. Under optimal conditions, DBU could be potentially reused for at least 10 cycles to yield high amounts of biodiesel. This study suggests that the switchable solvent-assisted direct transesterification of wet SCGs is a potential, efficient, cost-effective, and eco-friendly approach for biodiesel synthesis.
Collapse
Affiliation(s)
- Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - My Linh Nguyen
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Fu-Ming Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Horng-Yi Juan
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
16
|
|
17
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
18
|
Budžaki S, Sundaram S, Tišma M, Hessel V. Cost analysis of oil cake-to-biodiesel production in packed-bed micro-flow reactors with immobilized lipases. J Biosci Bioeng 2019; 128:98-102. [PMID: 30745064 DOI: 10.1016/j.jbiosc.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Biodiesel production depends to a great extent on the use of cheap raw materials, since biodiesel itself is a mass product, not a high-value product. New processing methods, such as micro-flow continuous processing combined with enzymatic catalysis, open doors to the latter. As reported here, the window of opportunity in enzyme-catalyzed biodiesel production is the conversion of waste cooking oil. The main technological challenge for this is to obtain efficient immobilization of the lipase catalyst on beads. The beads can be filled into tubular reactors where designed packed-bed provide porous channels, forming micro-flow. It turns out, that in this way, the immobilization costs become the decisive economic factor. This paper reports a solution to that issue. The use of oil cake enables economic viability, which is not given by any of the commercial polymeric substrates used so far for enzyme immobilization. The costs of immobilization are mirrored in the earnings and cash flow of the new biotechnological process.
Collapse
Affiliation(s)
- Sandra Budžaki
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Smitha Sundaram
- Group Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Volker Hessel
- Group Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands; School of Chemical Engineering, The University of Adelaide, Adelaide, 5005 South Australia, Australia.
| |
Collapse
|
19
|
Okwundu OS, El-Shazly AH, Elkady M. Comparative effect of reaction time on biodiesel production from low free fatty acid beef tallow: a definition of product yield. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-018-0145-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|