1
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Zuo X, Xu W, Wei S, Jiang S, Luo Y, Ling M, Zhang K, Gao Y, Wang Z, Hu J, Grossart HP, Luo Z. Aerobic denitrifying bacterial-fungal consortium mediating nitrate removal: Dynamics, network patterns and interactions. iScience 2023; 26:106824. [PMID: 37250796 PMCID: PMC10212969 DOI: 10.1016/j.isci.2023.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, nitrogen removal by mixed microbial cultures has received increasing attention owing to cooperative metabolism. A natural bacterial-fungal consortium was isolated from mariculture, which exhibited an excellent aerobic denitrification capacity. Under aerobic conditions, nitrate removal and denitrification efficiencies were up to 100% and 44.27%, respectively. High-throughput sequencing and network analysis suggested that aerobic denitrification was potentially driven by the co-occurrence of the following bacterial and fungal genera: Vibrio, Fusarium, Gibberella, Meyerozyma, Exophiala and Pseudoalteromonas, with the dominance of Vibrio and Fusarium in bacterial and fungal communities, respectively. In addition, the isolated consortium had a high steady aerobic denitrification performance in our sub-culturing experiments. Our results provide new insights on the dynamics, network patterns and interactions of aerobic denitrifying microbial consortia with a high potential for new biotechnology applications.
Collapse
Affiliation(s)
- Xiaotian Zuo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Shuangcheng Jiang
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China
| | - Yu Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minghuang Ling
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuanhao Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiege Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
- Institute of Biochemistry and Biology, Postdam University, Potsdam 14469, Germany
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Marine Biology College, Xiamen Ocean Vocational College, Xiamen 361012, China
- Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Zhang Z, Yu S, Fan K, Wang J, Yang B, Peng X, Zhang L, Wu H, Guo J. Synthesis of Carbon Nitride Supported POM‐based IL for Deep Oxidative Desulfurization of Dibenzothiophene. ChemistrySelect 2023. [DOI: 10.1002/slct.202203053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhe Zhang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Shanshan Yu
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Ke Fan
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Jian Wang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Biao Yang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Xuelian Peng
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Linfeng Zhang
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Huadong Wu
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| | - Jia Guo
- Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Key Laboratory of Green Chemical Process of Ministry of Education Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology Wuhan Institute of Technology Wuhan 430073 P. R. China
| |
Collapse
|
4
|
Li X, Zhai W, Duan X, Gou C, Li M, Wang L, Basang W, Zhu Y, Gao Y. Extraction, Purification, Characterization and Application in Livestock Wastewater of S Sulfur Convertase. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16368. [PMID: 36498440 PMCID: PMC9740322 DOI: 10.3390/ijerph192316368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sulfide is a toxic pollutant in the farming environment. Microbial removal of sulfide always faces various biochemical challenges, and the application of enzymes for agricultural environmental remediation has promising prospects. In this study, a strain of Cellulosimicrobium sp. was isolated: numbered strain L1. Strain L1 can transform S2-, extracellular enzymes play a major role in this process. Next, the extracellular enzyme was purified, and the molecular weight of the purified sulfur convertase was about 70 kDa. The sulfur convertase is an oxidase with thermal and storage stability, and the inhibitor and organic solvent have little effect on its activity. In livestock wastewater, the sulfur convertase can completely remove S2-. In summary, this study developed a sulfur convertase and provides a basis for the application in environmental remediation.
Collapse
Affiliation(s)
- Xintian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Wei Zhai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Xinran Duan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|
5
|
Zhang W, Wu Y, Wu J, Zheng X, Chen Y. Enhanced removal of sulfur-containing organic pollutants from actual wastewater by biofilm reactor: Insights of sulfur transformation and bacterial metabolic traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120187. [PMID: 36116571 DOI: 10.1016/j.envpol.2022.120187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Sulfur-containing organic pollutants in wastewater could threaten human health due to their high malodor and toxicity, and their conversion processes are more complex than inorganic sulfur compounds. Membrane aerated biofilm reactor (MABR), as a novel and environmentally-friendly biofilm-based technology, is able to remove inorganic sulfur in synthetic wastewater. However, it is unknown how sulfur-containing organic pollutants in actual wastewater are transformed in MABR system. This work demonstrated the feasibility of MABR to eliminate sulfur-containing organic pollutants in actual wastewater, and the removal efficiency could be reached at approximately 100%. Meanwhile, over 70% of sulfur-containing organic contaminants were transformed to SO42- during the long-term operation. Further analysis indicated that the functional bacteria that participated in sulfur transformation and carbohydrates degradation (e.g., Chujaibacter, Microscillaceaesp., and Thiobacillus) were evidently enriched when treating actual wastewater. Moreover, the critical metabolic pathways (e.g., sulfur metabolism, glycolysis metabolism, and pyruvate metabolism), and the corresponding genetic expressions (e.g., nrrA, tauA, tauC, sorA, and SUOX) were evidently up-regulated during long-term operation, which was beneficial for the transformation of sulfur-containing organic pollutants in actual wastewater by MABR. This work would expand the application of MABR for treating the actual sulfur-containing organic wastewater and provide an in-depth understanding of the organic sulfur transformation in MABR.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
6
|
Dou L, Zhang M, Pan L, Liu L, Su Z. Sulfide removal characteristics, pathways and potential application of a novel chemolithotrophic sulfide-oxidizing strain, Marinobacter sp. SDSWS8. ENVIRONMENTAL RESEARCH 2022; 212:113176. [PMID: 35364039 DOI: 10.1016/j.envres.2022.113176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 05/27/2023]
Abstract
Sulfide generally exists in wastewater, black and odor river, as well as aquaculture water, and give rise to adverse effect on ecological stability and biological safety, due to the toxicity, corrosivity and malodor of sulfide. In the present study, a chemolithotrophic sulfide-oxidizing bacteria (SOB) was isolated and identified as Marinobacter maroccanus strain SDSWS8. And it produced no hemolysin and was susceptible to most antibiotics. There were no accumulation of sulfide, sulfate and thiosulfate during the sulfide removal process. The optimum conditions of sulfide removal were temperature 15-40 °C, initial pH value 4.5-9.5, salinity 10-40‰, C/N ratio 0-20 and sulfide concentration 25-150 mg/L. The key genes of sulfide oxidation, Sox system (soxB, soxX, soxA, soxZ, soxY, soxD, soxC), dissimilatory sulfur oxidation (dsrA, aprA and sat) and sqr, were successfully amplified and expressed, indicating the three pathways coordinated to complete the sulfide oxidation. Besides, strain SDSWS8 had inhibitory effect on four pathogen Vibrio (V. harveyi, V. parahaemolyticus, V. anguillarum and V. splendidus). Furthermore, efficient removal of sulfide from real aquaculture water and sludge mixture could be accomplished by strain SDSWS8. This study may provide a promising candidate strain for sulfide-rich water treatment.
Collapse
Affiliation(s)
- Le Dou
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China.
| | - Liping Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| | - Zhaopeng Su
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong, 266003, China
| |
Collapse
|
7
|
Facile and controllable preparation of nanocrystalline ZSM-5 and Ag/ZSM-5 zeolite with enhanced performance of adsorptive desulfurization from fuel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cai MH, Luo G, Li J, Li WT, Li Y, Li AM. Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. CHEMOSPHERE 2021; 280:130937. [PMID: 34162109 DOI: 10.1016/j.chemosphere.2021.130937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Nitrate and sulfate often coexist in organic wastewater. In this study, an internal circulation anaerobic reactor was conducted to investigate the impact of nitrate on sulfate reduction. The results showed that sulfate reduction rate dropped from 78.4% to 41.4% at NO3- /SO42- ratios ranging from 0 to 1.03, largely attributed to the inactivity of acetate-utilizing sulfate-reducing bacteria (SRB) and preferential usage of nitrate of propionate-utilizing SRB. Meanwhile, high nitrate removal efficiency was maintained and COD removal efficiency increased with nitrate addition. Enhancement of propionate and butyrate degradation based on Modified Gompertz model and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis. Moreover, nitrate triggered the shift of microbial community and function. Twelve genera affiliated to Firmicutes, Bacteroidetes and Proteobacteria were identified as keystone genera via network analysis, which kept functional stability of the bacterial community responding to nitrate stress. Increased nitrate inhibited Desulfovibrio, but promoted the growth of Desulforhabdus. Both the predicted functional genes associated with assimilatory sulfate reduction pathway (cysC and cysNC) and dissimilatory sulfate reduction pathway (aprA, aprB, dsrA and dsrB) exhibited negative relationship with nitrate addition.
Collapse
Affiliation(s)
- Min-Hui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Liu H, Dai L, Yao J, Mei Y, Hrynsphan D, Tatsiana S, Chen J. Efficient biotransformation of sulfide in anaerobic sequencing batch reactor by composite microbial agent: performance optimization and microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48718-48727. [PMID: 33913111 DOI: 10.1007/s11356-021-12717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Sulfur-containing wastewater is very common as an industrial waste, yet a high-efficiency composite microbial agent for sulfur-containing wastewater treatment is still lacking. In this work, three novel and efficient desulfurizing bacteria were isolated from the sewage treatment tank of Zhejiang Satellite Energy Co., Ltd. They were identified as Brucella melitensis (S1), Ochrobactrum oryzae (S8), and Achromobacter xylosoxidans (S9). These three strains of bacteria were responsible for the oxidative metabolism of sodium sulfide via a similar polythionate pathway, which could be expressed as follows: S2-→S2O32-/S0→SO32-→SO42-. Activated carbon, wheat bran, and diatomite at 1:1:1 ratio are used as carriers to construct a composite microbial agent containing the three bacteria. The desulfurization efficiency of 95% was predicted by response surface methodology under the following optimum conditions: the dosage of the inoculum was 3 g/L, pH 7.86, and temperature of 39 °C. Additionally, the impact resistance was studied in the anaerobic sequencing batch reactor. The removal capacity of microbial agent reached 98%. High-throughput analysis showed that composite microbial agent increased bacterial evenness and diversity, and the relative abundance of Brucellaceae increased from 5.04 to 8.79% in the reactor. In the process of industrial wastewater transformation, the transformation rate of sulfide by composite microbial agent was maintained between 70 and 81%. The composite microbial agent had potential for the treatment of sulfur-containing wastewater.
Collapse
Affiliation(s)
- Huan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 30021, People's Republic of China
| | - Yu Mei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 30021, People's Republic of China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Blearusian State University, 220030, Minsk, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Blearusian State University, 220030, Minsk, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 30021, People's Republic of China.
| |
Collapse
|
10
|
Feng S, Jiang Z, Chen Y, Gong L, Tong Y, Zhang H, Huang X, Yang H. Simultaneous denitrification and desulfurization-S 0 recovery of wastewater in trickling filters by bioaugmentation intervention based on avoiding collapse critical points. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112834. [PMID: 34049056 DOI: 10.1016/j.jenvman.2021.112834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
In order to better achieve efficiently simultaneous desulfurization and denitrification/S0 recovery of wastewater, the intervention of sulfur oxidizing bacteria (SOB) and denitrifying bacteria (DNB) was employed to avoid the collapse critical points (the dramatically decrease of S/N removal efficiency) under the fluctuated load. With the assistance of DNB and SOB, collapse critical point of trickling filter (TF) was delayed from the P8 (105-114 d) to P10 stage (129-138 d). The treatment efficiency of nitrogen and sulfur was the highest with the S/N ratio of 3:1. The bioaugmentation of DNB and SOB at collapse critical point could effectively regulated collapse situation, which further increased the maximum system utilization/elimination capacity to 4.50 kg S m-3·h-1 and 0.90 kg N m-3·h-1 (increased by 56.89% and 65.56% in comparison to control). High-throughput sequencing analysis indicated that Proteobacteria (average 78.59%) and Bacteroidetes (average 9.30%) were dominant bacteria in the reactor at all stages. As the reaction proceeds, the microbial community was gradually dominated by some functional genera such as Chryseobacterium (average 2.97%), Halothiobacillus (average 22.71%), Rhodanobacter (average 14.02%), Thiobacillus (average 9.01%), Thiomonas (average 16.70%) and Metallibacterium (average 21.63%), which could remove nitrate or sulfide. Both of Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) demonstrated the important role of DNB/SOB during the long-term run in the trickling filters (TFs).
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Zhenming Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Yuqing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Liangqi Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Yanjun Tong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China.
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Xing Huang
- WUXI City Environmental Technology Co., Ltd, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, China.
| |
Collapse
|
11
|
Sun Y, Qaisar M, Wang K, Lou J, Li Q, Cai J. Production and characteristics of elemental sulfur during simultaneous nitrate and sulfide removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36226-36233. [PMID: 33687628 DOI: 10.1007/s11356-021-13269-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The production and characteristics of elemental sulfur were examined during simultaneous sulfide and nitrate removal, with abiotic assays as control. The biotic assay showed good sulfide and nitrate removal, with the respective removal percentage of which were 90.67-96.88% and 100%. Nitrate reduction resulted in the production of nitrogen gas, while sulfate formed due to sulfide oxidation. The concentration of elemental sulfur in the effluent was greater than that in the sludge, which accounted for 73.70-86.28% of total elemental sulfur produced. Furthermore, the elemental sulfur of the effluent and sludge from the biotic assays was orthorhombic crystal S8. Elemental sulfur was normally distributed in the effluent, but its average diameter increased with the increasing influent sulfide concentration (60-300 mg S/L), where the average diameter increased from 10 (60 mg S/L) to 29 μm (300 mg S/L).
Collapse
Affiliation(s)
- Yue Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Kaiquan Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| | - Juqing Lou
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| | - Qiangbiao Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Liu S, Chen Y, Xiao L. Metagenomic insights into mixotrophic denitrification facilitated nitrogen removal in a full-scale A2/O wastewater treatment plant. PLoS One 2021; 16:e0250283. [PMID: 33857258 PMCID: PMC8049308 DOI: 10.1371/journal.pone.0250283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are important for pollutant removal from wastewater, elimination of point discharges of nutrients into the environment and water resource protection. The anaerobic/anoxic/oxic (A2/O) process is widely used in WWTPs for nitrogen removal, but the requirement for additional organics to ensure a suitable nitrogen removal efficiency makes this process costly and energy consuming. In this study, we report mixotrophic denitrification at a low COD (chemical oxygen demand)/TN (total nitrogen) ratio in a full-scale A2/O WWTP with relatively high sulfate in the inlet. Nitrogen and sulfur species analysis in different units of this A2/O WWTP showed that the internal sulfur cycle of sulfate reduction and reoxidation occurred and that the reduced sulfur species might contribute to denitrification. Microbial community analysis revealed that Thiobacillus, an autotrophic sulfur-oxidizing denitrifier, dominated the activated sludge bacterial community. Metagenomics data also supported the potential of sulfur-based denitrification when high levels of denitrification occurred, and sulfur oxidation and sulfate reduction genes coexisted in the activated sludge. Although most of the denitrification genes were affiliated with heterotrophic denitrifiers with high abundance, the narG and napA genes were mainly associated with autotrophic sulfur-oxidizing denitrifiers. The functional genes related to nitrogen removal were actively expressed even in the unit containing relatively highly reduced sulfur species, indicating that the mixotrophic denitrification process in A2/O could overcome not only a shortage of carbon sources but also the inhibition by reduced sulfur of nitrification and denitrification. Our results indicate that a mixotrophic denitrification process could be developed in full-scale WWTPs and reduce the requirement for additional carbon sources, which could endow WWTPs with more flexible and adaptable nitrogen removal.
Collapse
Affiliation(s)
- Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Yasong Chen
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
13
|
Cai J, Qaisar M, Ding A, Zhang J, Xing Y, Li Q. Insights into microbial community in microbial fuel cells simultaneously treating sulfide and nitrate under external resistance. Biodegradation 2021; 32:73-85. [PMID: 33442823 DOI: 10.1007/s10532-021-09926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
The effect of electricity, induced by external resistance, on microbial community performance is investigated in Microbial Fuel Cells (MFCs) involved in simultaneous biotransformation of sulfide and nitrate. In the experiment, three MFCs were operated under different external resistances (100 Ω, 1000 Ω and 10,000 Ω), while one MFC was operated with open circuit as control. All MFCs demonstrate good capacity for simultaneous sulfide and nitrate biotransformation regardless of external resistance. MFCs present similar voltage profile; however, the output voltage has positive relationship with external resistance, and the MFC1 with lowest external resistance (100 Ω) generated highest power density. High-throughput sequencing confirms that taxonomic distribution of suspended sludge in anode chamber encompass phylum level to genus level, while the results of principal component analysis (PCA) suggest that microbial communities are varied with external resistance, which external resistance caused the change of electricity generation and substrate removal at the same, and then leads to the change of microbial communities. However, based on Pearson correlation analyses, no strong correlation is evident between community diversity indices (ACE index, Chao index, Shannon index and Simpson index) and the electricity (final voltage and current density). It is inferred that the performance of electricity did not significantly affect the diversity of microbial communities in MFCs biotransforming sulfide and nitrate simultaneously.
Collapse
Affiliation(s)
- Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Aqiang Ding
- Department of Environmental Science, College of Resource and Environmental Science, Chongqing University, Chongqing, China
| | - Jiqiang Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yajuan Xing
- College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Qiangbiao Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Li S, Zhang H, Huang T, Ma B, Miao Y, Shi Y, Xu L, Liu K, Huang X. Aerobic denitrifying bacterial communities drive nitrate removal: Performance, metabolic activity, dynamics and interactions of core species. BIORESOURCE TECHNOLOGY 2020; 316:123922. [PMID: 32758920 DOI: 10.1016/j.biortech.2020.123922] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Three novel mix-cultured aerobic denitrifying bacteria (Mix-CADB) consortia named D14, X21, and CL exhibited excellent total organic carbon (TOC) removal and aerobic denitrification capacities. The TOC and nitrate removal efficiencies were higher than 93.00% and 98.00%. The results of Biolog demonstrated that three communities displayed high carbon metabolic activity. nirS gene sequencing and ecological network model revealed that Pseudomonas stutzeri, Paracoccus sp., and Paracoccus denitrificans dominated in the D14, X21, and CL communities. The dynamics and co-existence of core species in communities drove the nutrient removal. Response surface methodology showed the predicted total nitrogen removal efficiency reached 99.43% for D14 community. The three Mix-CADB consortia have great potential for nitrogen-polluted aquatic water treatment because of their strong adaptability and removal performance. These results will provide new understanding of co-existence, interaction and dynamics of Mix-CADB consortia for nitrogen removal in nitrogen-polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Sulin Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
15
|
Li T, Guo Z, She Z, Zhao Y, Guo L, Gao M, Jin C, Ji J. Comparison of the effects of salinity on microbial community structures and functions in sequencing batch reactors with and without carriers. Bioprocess Biosyst Eng 2020; 43:2175-2188. [PMID: 32661564 DOI: 10.1007/s00449-020-02403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
This study investigated and compared the microbial communities between a sequencing batch reactor (SBR) without carriers and a hybrid SBR with addition of carriers for the treatment of saline wastewater. The two systems were operated over 292 days with alternating aerobic/anoxic mode (temperature: 28℃, salinity: 0.0-3.0%). High removal efficiency of chemical oxygen demand (COD) and total inorganic nitrogen (TIN) was achieved in both the SBR (above 86.7 and 95.4% respectively) and hybrid SBR (above 84.4 and 94.0%) at 0.0-2.5% salinity. Further increasing salinity to 3.0% decreased TIN removal efficiency to 78.4% in the hybrid SBR. Steep decline of biodiversity and relative abundance of ammonia-oxidizing bacteria (AOB) contributed to the worse performance. More genera related to sulfide-oxidizing and sulfate-reducing bacteria were detected in the hybrid SBR than the SBR at 3.0% salinity. The abundance of halotolerant bacteria increased with the salinity increase for both reactors, summing up to 25.5% in the suspended sludge (S-sludge) from the SBR, 28.9 and 22.9% in the S-sludge and biofilm taken from the hybrid SBR, respectively. Nitrification and denitrification via nitrate was the main nitrogen removal pathway in the SBR and hybrid SBR at 0.0 and 0.5% salinity, while partial nitrification and denitrification via nitrite became the key process for nitrogen removal in the two reactors when the salinity was increased to 1.0-3.0%. Higher abundance of anaerobic ammonium-oxidizing (ANAMMOX) and sulfide-oxidizing autotrophic denitrification (SOAD) bacteria were found in the hybrid SBR at 3.0% salinity.
Collapse
Affiliation(s)
- Ting Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zixuan Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
16
|
Cai J, Qaisar M, Sun Y, Wang K, Lou J, Wang R. Coupled substrate removal and electricity generation in microbial fuel cells simultaneously treating sulfide and nitrate at various influent sulfide to nitrate ratios. BIORESOURCE TECHNOLOGY 2020; 306:123174. [PMID: 32197955 DOI: 10.1016/j.biortech.2020.123174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The current work coupled simultaneous sulfide and nitrate removal in a Microbial Fuel Cell (MFC). The substrate removal and electricity generation were coupled at influent Sulfide to Nitrate molar ratios (S/N ratios) of 5:0, 5:1, 5:2 and 5:3. The sulfide concentrations used included: 60 mg S/L, 300 mg S/L, 540 mg S/L, 780 mg S/L and 1020 mg S/L. The effect of S/N ratio on the performance of substrate removal was greater at higher influent sulfide concentration. The electricity generation also varied at different influent sulfide concentrations and S/N ratios. The number of electrons generated at S/N ratio of 5:2 was the largest at any fixed influent sulfide concentration. The Pearson correlation showed that effluent sulfate concentration and nitrogen gas had significant positive correlations with steady state voltage (or electronic quantity). Moreover, the simulation models were developed to establish the relation between substrate removal and electricity generation at various S/N ratios.
Collapse
Affiliation(s)
- Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Yue Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Kaiquan Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Juqing Lou
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Ruyi Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
17
|
Zhang Z, Xu C, Han H, Zheng M, Shi J, Ma W. Effect of low-intensity electric current field and iron anode on biological nitrate removal in wastewater with low COD to nitrogen ratio from coal pyrolysis. BIORESOURCE TECHNOLOGY 2020; 306:123123. [PMID: 32179400 DOI: 10.1016/j.biortech.2020.123123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Mixotrophic nitrate removal in wastewater from coal pyrolysis was achieved in microbial electrolysis cell with iron anode (iron-MEC). The effect of voltage, iron anode and conductivity were investigated. The effluent TN concentration was 8.35 ± 1.94 mg/L in iron-MEC when the conductivity of the wastewater was adjusted to 3.97 ± 0.08 mS/cm, which was lower than that in no-treated reactor. The increase of current density, which was resulted from the elevation of conductivity, promoted the iron corrosion and Fe2+ ion generation. Therefore, more Fe2+ ion was utilized by nitrate reducing ferrous oxidation bacteria (NRFOB) used to reduce nitrate. The microbial community analysis demonstrated that NRFOB, including Acidovorax and Bradyrhizobium, possessed a higher abundance in iron-MEC. The enrichment of Geobacter in iron-MEC might imply that the part of Fe(III) produced by ferrous oxidation was reduced by Geobacter, which established an iron cycle. Moreover, the production of N2O was decreased by the formation of Fe2+ ion.
Collapse
Affiliation(s)
- Zhengwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Mengqi Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jingxin Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
18
|
Cai J, Qaisar M, Sun Y. Effect of external resistance on substrate removal and electricity generation in microbial fuel cell treating sulfide and nitrate simultaneously. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:238-249. [PMID: 31784879 DOI: 10.1007/s11356-019-06960-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The effect of external resistance on substrate removal and electricity generation was explored in microbial fuel cells (MFCs) simultaneously treating sulfide and nitrate. The MFCs were operated under three different conditions keeping open-circuit MFC as control. In batch mode, all the MFCs showed good capacity of simultaneously removing sulfide and nitrate regardless of external resistance. The voltage profile could be divided into rapid descent zone, bulge zone, and stability zone, which represents typical polarization behavior. Taking open circuit as control, low external resistance promoted the production of sulfate and nitrogen gas, while a strong link between product production and external resistance was evident based on Pearson correlation analyses. In addition, low external resistance improved the amount of transferred electrons, while the peak electronic quantity was noticed when the external resistance was equivalent to internal resistance. Moreover, the mechanism of substrate removal and electricity generation was hypothesized for the MFCs simultaneously treating sulfide and nitrate which explained the results well.
Collapse
Affiliation(s)
- Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Zhejiang Province, Hangzhou, China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Yue Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Sun Q, Lin J, Cao J, Li C, Shi D, Gao M, Wang Y, Zhang C, Ding S. A new method to overall immobilization of phosphorus in sediments through combined application of capping and oxidizing agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133770. [PMID: 31401510 DOI: 10.1016/j.scitotenv.2019.133770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
A new method has been developed for improving the overall immobilization efficiency of phosphorus (P) in sediment. A capping agent (lanthanum modified bentonite, LMB) was sprinkled on the sediment surface to prevent the release of P in the top sediment layer. Meanwhile, an oxidizing agent (calcium nitrate, CN) was injected into the sediment layer (~5 cm) to immobilize labile P in deep sediment layers. High-resolution sampling techniques, including diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper) were employed to investigate the fine-scale changes of labile and/or soluble nitrogen, P, sulfide and iron in sediments, respectively. The results showed that the combined application of LMB and CN had significant advantages over the individual treatments. The average concentrations of soluble reactive phosphorus (SRP) (0.01 mg/L) in the overlying water after a 68-day incubation were only 10%, 21% and 4% for the CK, LMB and CN treatments, respectively. Furthermore, the immobilization effect caused by the combined treatment reached from the sediment-water interface to a depth of 60 mm in the sediment, and the effective depth was much >20 mm caused by LMB treatment. The concentrations of SRP in the sediment profile were also lower than those of the other treatments. The results of this work indicate that the combined application of capping and oxidizing agents is a promising method to control water eutrophication by preventing the release of P from both the top and deep sediment layers.
Collapse
Affiliation(s)
- Qin Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Juan Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxin Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Dan Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mingrui Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing EasySensor Environmental Technology Co., Ltd., Nanjing 210018, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd., Nanjing 210018, China.
| |
Collapse
|
20
|
Cui YX, Guo G, Ekama GA, Deng YF, Chui HK, Chen GH, Wu D. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. WATER RESEARCH 2019; 162:246-257. [PMID: 31279316 DOI: 10.1016/j.watres.2019.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The sulfide-oxidizing autotrophic denitrification (SOAD) process offers a feasible alternative to mainstream heterotrophic denitrification in treating domestic sewage with insufficient organics. Previously SOAD has been successfully applied in a moving-bed biofilm reactor (MBBR). However, the biofilm properties and biokinetics are still not thoroughly understood. The present study was therefore designed to investigate these features of sulfur-oxidizing biofilms (SOBfs) cultivated in a lab-scale MBBR under stable operation for over a year. The biofilms developed were 160 μm thick, had an uneven and porous surface on which elemental sulfur (S0) accumulated, and the SOB biomass was highly diverse. The bioprocess kinetics were evaluated through 12 batch experiments. The results were interpreted by adopting a two-step sulfide oxidation model (sulfide→S0 and S0→ sulfate) with all specific rates having a linear regression coefficient of R2 > 0.9. Moreover, the inhibitory kinetic analysis revealed that 1) the maximum treatment capacity (about 480 mg S/(m2·h) and 80 mg N/(m2·h)) was observed at low sulfide level (40 mg S/L), while higher sulfide level (60-150 mg S/L) showed increasing inhibition on the oxidation of both sulfide and sulfur and denitrification. 2) The denitritation activity decreased by up to 43% when free nitrous acid reached a maximum of 8.6 μg N/L, whereas the oxidation of sulfide and sulfur did not have any significant effect. Interestingly, two physiologically diverse SOB groups were found in this special biofilm. The mechanisms of the cooperation and competition for electron donors and acceptors between these two SOB clades are proposed. The results of this study greatly enhance our understanding of the design and optimization of SOAD-MBBR for mainstream nitrogen removal.
Collapse
Affiliation(s)
- Yan-Xiang Cui
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Graduate School and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Guangdong, China
| | - Gang Guo
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ho-Kwong Chui
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Graduate School and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Graduate School and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
21
|
Mannacharaju M, Chittybabu S, Sheikh John SB, Somasundaram S, Ganesan S. Bio catalytic oxidation of sulphide laden wastewater from leather industry using sulfide: Quinone oxidoreductase immobilized bio reactor. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1666107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahesh Mannacharaju
- Environmental Science and Engineering Division, CSIR – Central Leather Research Institute (CLRI), Adyar, India
| | - Sridevi Chittybabu
- Department of Nanotechnology, Anna University Regional Campus, Coimbatore, India
| | | | - Swarnalatha Somasundaram
- Environmental Science and Engineering Division, CSIR – Central Leather Research Institute (CLRI), Adyar, India
| | - Sekaran Ganesan
- Environmental Science and Engineering Division, CSIR – Central Leather Research Institute (CLRI), Adyar, India
| |
Collapse
|