1
|
Li Y, Cao M, Gupta VK, Wang Y. Metabolic engineering strategies to enable microbial electrosynthesis utilization of CO 2: recent progress and challenges. Crit Rev Biotechnol 2024; 44:352-372. [PMID: 36775662 DOI: 10.1080/07388551.2023.2167065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
Microbial electrosynthesis (MES) is a promising technology that mainly utilizes microbial cells to convert CO2 into value-added chemicals using electrons provided by the cathode. However, the low electron transfer rate is a solid bottleneck hindering the further application of MES. Thus, as an effective strategy, genetic tools play a key role in MES for enhancing the electron transfer rate and diversity of production. We describe a set of genetic strategies based on fundamental characteristics and current successes and discuss their functional mechanisms in driving microbial electrocatalytic reactions to fully comprehend the roles and uses of genetic tools in MES. This paper also analyzes the process of nanomaterial application in extracellular electron transfer (EET). It provides a technique that combines nanomaterials and genetic tools to increase MES efficiency, because nanoparticles have a role in the production of functional genes in EET although genetic tools can subvert MES, it still has issues with difficult transformation and low expression levels. Genetic tools remain one of the most promising future strategies for advancing the MES process despite these challenges.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Wang M, Feng L, Luo G, Feng T, Zhao S, Wang H, Shi S, Liu T, Fu Q, Li J, Wang N, Yuan Y. Ultrafast extraction of uranium from seawater using photosensitized biohybrid system with bioinspired cascaded strategy. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130620. [PMID: 37056004 DOI: 10.1016/j.jhazmat.2022.130620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 06/19/2023]
Abstract
The highly effective utilization of uranium resources in global seawater is a viable method to satisfy the rising demands for fueling nuclear energy industry. Herein, inspired by the multi-mechanisms of the marine bacteria for uranium immobilization, CdS nanoparticles are deposited on the cell of marine bacterial strain Bacillus velezensis UUS-1 to create a photosensitized biohybrid system UUS-1/CdS. This system achieves high uranium extraction efficiency using a cascaded strategy, where the bacterial cells guarantee high extraction selectivity and the photosensitive CdS nanoparticles realize cascading photoreduction of high soluble U(VI) to low soluble U(IV) to enhance extraction capacity. As one of the fastest-acting adsorbents in natural seawater, a high extraction capacity for uranium of 7.03 mg g-1 is achieved with an ultrafast extraction speed of 4.69 mg g-1 d-1. The cascaded strategy promisingly improves uranium extraction performance and pioneers a new direction for the design of adsorbents to extract uranium from seawater.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Lijuan Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Guangsheng Luo
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Tiantian Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Shilei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Hui Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Se Shi
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Tao Liu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Qiongyao Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Jingquan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Ning Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Yihui Yuan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
3
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
4
|
Photosensitized biohybrid for terminal oxygenation of n-alkane to α, ω-dicarboxylic acids. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Durante‐Rodríguez G, Carmona M, Díaz E. Novel approaches to energize microbial biocatalysts. Environ Microbiol 2023; 25:161-166. [PMID: 36263658 PMCID: PMC10100456 DOI: 10.1111/1462-2920.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/21/2023]
Abstract
An efficient and cheap energization of microbial biocatalysts is essential in current biotechnological processes. A promising alternative to the use of common organic or inorganic electron donors is the semiconductor nanoparticles (SNs) that absorb light and transfer electrons (photoelectrons) behaving as artificial photosynthetic systems (biohybrid systems). Excited photoelectrons generated by illuminated SNs are highly reductive and readily accepted by membrane-bound proteins and electron shuttles to drive specific cell reduction processes and energy generation in microbes. However, the operational mechanisms of these hybrid systems are still poorly understood, especially at the material-microbe interface, and therefore the design and production of efficient biohybrids are challenging. Some major limitations/challenges and future prospects of SNs as microbial energization systems are discussed.
Collapse
Affiliation(s)
- Gonzalo Durante‐Rodríguez
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Manuel Carmona
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
6
|
Onyeaka H, Ekwebelem OC. A review of recent advances in engineering bacteria for enhanced CO 2 capture and utilization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:4635-4648. [PMID: 35755182 PMCID: PMC9207427 DOI: 10.1007/s13762-022-04303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2) is emitted into the atmosphere due to some anthropogenic activities, such as the combustion of fossil fuels and industrial output. As a result, fears about catastrophic global warming and climate change have intensified. In the face of these challenges, conventional CO2 capture technologies are typically ineffective, dangerous, and contribute to secondary pollution in the environment. Biological systems for CO2 conversion, on the other hand, provide a potential path forward owing to its high application selectivity and adaptability. Moreover, many bacteria can use CO2 as their only source of carbon and turn it into value-added products. The purpose of this review is to discuss recent significant breakthroughs in engineering bacteria to utilize CO2 and other one-carbon compounds as substrate. In the same token, the paper also summarizes and presents aspects such as microbial CO2 fixation pathways, engineered bacteria involved in CO2 fixation, up-to-date genetic and metabolic engineering approaches for CO2 fixation, and promising research directions for the production of value-added products from CO2. This review's findings imply that using biological systems like modified bacteria to manage CO2 has the added benefit of generating useful industrial byproducts like biofuels, pharmaceutical compounds, and bioplastics. The major downside, from an economic standpoint, thus far has been related to methods of cultivation. However, thanks to genetic engineering approaches, this can be addressed by large production yields. As a result, this review aids in the knowledge of various biological systems that can be used to construct a long-term CO2 mitigation technology at an industrial scale, in this instance bacteria-based CO2capture/utilization technology.
Collapse
Affiliation(s)
- H. Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - O. C. Ekwebelem
- Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001 Nigeria
| |
Collapse
|
7
|
Li Y, Tian X, Chen L, Li J, Zhao F. Enhanced interfacial electron transfer between semiconductor and non-photosynthetic microorganism under visible light. Bioelectrochemistry 2022; 147:108195. [DOI: 10.1016/j.bioelechem.2022.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
|
8
|
Improved polyhydroxybutyrate production by Cupriavidus necator and the photocatalyst graphitic carbon nitride from fructose under low light intensity. Int J Biol Macromol 2022; 203:526-534. [PMID: 35120931 DOI: 10.1016/j.ijbiomac.2022.01.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
Abstract
The photocatalyst graphitic carbon nitride (g-C3N4) is known to photostimulate the production of the bioplastic polyhydroxybutyrate (PHB) by Cupriavidus necator. In previous studies, the combination of C. necator and g-C3N4 increased PHB yield from either an organic or inorganic carbon substrate under a light intensity of 4200 lx. Here, different parameters including light intensity, pH, temperature, nitrogen and carbon concentrations, aeration, and inoculum size were explored to maximize PHB production by hybrid photosynthesis from fructose and visible light. A g-C3N4/C. necator culture grown with a lower light intensity of 2100 lx, an inoculum size of 128.30 × 106 CFU ml-1, and constant aeration produced 7.16 g l-1 d-1 PHB with a product yield from fructose of 60.94%. Furthermore, the ratio of incident photons harvested by g-C3N4 converted into NADPH+H+ by C. necator for PHB production was improved to 19.74% after the process optimization. In comparison, the PHB production rate of a non-optimized g-C3N4/C. necator system exposed to 4200 lx was only 2.94 g l-1 d-1 with a product yield from fructose of 33.29%. These results demonstrate that hybrid photosynthesis productivity can be significantly augmented by decreasing light intensity and adjusting other parameters, which is promising for future bioproduction applications.
Collapse
|
9
|
García JL, Galán B. Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy. Microb Biotechnol 2021; 15:228-239. [PMID: 34905295 PMCID: PMC8719819 DOI: 10.1111/1751-7915.13991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- José L García
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| | - Beatriz Galán
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| |
Collapse
|
10
|
Cestellos-Blanco S, Kim JM, Watanabe NG, Chan RR, Yang P. Molecular insights and future frontiers in cell photosensitization for solar-driven CO 2 conversion. iScience 2021; 24:102952. [PMID: 34458701 PMCID: PMC8379512 DOI: 10.1016/j.isci.2021.102952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The conversion of CO2 to value-added products powered with solar energy is an ideal solution to establishing a closed carbon cycle. Combining microorganisms with light-harvesting nanomaterials into photosynthetic biohybrid systems (PBSs) presents an approach to reaching this solution. Metabolic pathways precisely evolved for CO2 fixation selectively and reliably generate products. Nanomaterials harvest solar light and biocompatibly associate with microorganisms owing to similar lengths scales. Although this is a nascent field, a variety of approaches have been implemented encompassing different microorganisms and nanomaterials. To advance the field in an impactful manner, it is paramount to understand the molecular underpinnings of PBSs. In this perspective, we highlight studies inspecting charge uptake pathways and singularities in photosensitized cells. We discuss further analyses to more completely elucidate these constructs, and we focus on criteria to be met for designing photosensitizing nanomaterials. As a result, we advocate for the pairing of microorganisms with naturally occurring and highly biocompatible mineral-based semiconductor nanomaterials.
Collapse
Affiliation(s)
| | - Ji Min Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | | | | | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Sahoo PC, Singh A, Kumar M, Gupta R, Puri S, Ramakumar S. Light augmented CO2 conversion by metal organic framework sensitized electroactive microbes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ye J, Hu A, Ren G, Chen M, Zhou S, He Z. Biophotoelectrochemistry for renewable energy and environmental applications. iScience 2021; 24:102828. [PMID: 34368649 PMCID: PMC8326206 DOI: 10.1016/j.isci.2021.102828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biophotoelectrochemistry (BPEC) is an interdisciplinary research field and combines bioelectrochemistry and photoelectrochemistry through the utilization of the catalytic abilities of biomachineries and light harvesters to accomplish the production of energy or chemicals driven by solar energy. The BPEC process may act as a new approach for sustainable green chemistry and waste minimization. This review provides the state-of-the-art introduction of BPEC basics and systems, with a focus on light harvesters and biocatalysts, configurations, photoelectron transfer mechanisms, and the potential applications in energy and environment. Several examples of BPEC applications are discussed including H2 production, CO2 reduction, chemical synthesis, pollution control, and biogeochemical cycle of elements. The challenges about BPEC systems are identified and potential solutions are proposed. The review aims to encourage further research of BPEC toward development of practical BPEC systems for energy and environmental applications.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Xu L, Wang Y, Zhou D, Chen M, Yang X, Ye X, Yong Y. Bio‐Metabolism‐Driven Crystalline‐Engineering of CdS Quantum Dots for Highly Active Photocatalytic H
2
Evolution. ChemistrySelect 2021. [DOI: 10.1002/slct.202100591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Li‐Xia Xu
- Biofuels Institute, School of Environment and Safety Engineering Jiangsu University Zhenjiang 212013, Jiangsu Province China
| | - Yan‐Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering Jiangsu University Zhenjiang 212013, Jiangsu Province China
| | - Dao Zhou
- Biofuels Institute, School of Environment and Safety Engineering Jiangsu University Zhenjiang 212013, Jiangsu Province China
| | - Meng‐Yuan Chen
- Biofuels Institute, School of Environment and Safety Engineering Jiangsu University Zhenjiang 212013, Jiangsu Province China
| | - Xue‐Jin Yang
- Biofuels Institute, School of Environment and Safety Engineering Jiangsu University Zhenjiang 212013, Jiangsu Province China
| | - Xiao‐Mei Ye
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs Jiangsu Academy of Agricultural Sciences Nanjing 210014, Jiangsu Province China
| | - Yang‐Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering Jiangsu University Zhenjiang 212013, Jiangsu Province China
| |
Collapse
|
14
|
Martins M, Toste C, Pereira IAC. Enhanced Light-Driven Hydrogen Production by Self-Photosensitized Biohybrid Systems. Angew Chem Int Ed Engl 2021; 60:9055-9062. [PMID: 33450130 DOI: 10.1002/anie.202016960] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Storage of solar energy as hydrogen provides a platform towards decarbonizing our economy. One emerging strategy for the production of solar fuels is to use photocatalytic biohybrid systems that combine the high catalytic activity of non-photosynthetic microorganisms with the high light-harvesting efficiency of metal semiconductor nanoparticles. However, few such systems have been tested for H2 production. We investigated light-driven H2 production by three novel organisms, Desulfovibrio desulfuricans, Citrobacter freundii, and Shewanella oneidensis, self-photosensitized with cadmium sulfide nanoparticles, and compared their performance to Escherichia coli. All biohybrid systems produced H2 from light, with D. desulfuricans-CdS demonstrating the best activity overall and outperforming the other microbial systems even in the absence of a mediator. With this system, H2 was continuously produced for more than 10 days with a specific rate of 36 μmol gdcw -1 h-1 . High apparent quantum yields of 23 % and 4 % were obtained, with and without methyl viologen, respectively, exceeding values previously reported.
Collapse
Affiliation(s)
- Mónica Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Catarina Toste
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
15
|
Martins M, Toste C, Pereira IAC. Enhanced Light‐Driven Hydrogen Production by Self‐Photosensitized Biohybrid Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mónica Martins
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Catarina Toste
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
16
|
Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, Liu S. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004051. [PMID: 33325567 DOI: 10.1002/adma.202004051] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically active bacteria can transport their metabolically generated electrons to anodes, or accept electrons from cathodes to synthesize high-value chemicals and fuels, via a process known as extracellular electron transfer (EET). Harnessing of this microbial EET process has led to the development of microbial bio-electrochemical systems (BESs), which can achieve the interconversion of electrical and chemical energy and enable electricity generation, hydrogen production, electrosynthesis, wastewater treatment, desalination, water and soil remediation, and sensing. Here, the focus is on the current understanding of the microbial EET process occurring at both the bacteria-electrode interface and the biotic interface, as well as some attempts to improve the EET by using various nanomaterials. The behavior of nanomaterials in different EET routes and their influence on the performance of BESs are described. The inherent mechanisms will guide rational design of EET-related materials and lead to a better understanding of EET mechanisms.
Collapse
Affiliation(s)
- Ruiwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huidong Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinzhi Sun
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia Jiao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingqing Wang
- School of Chemistry and Chemical Engineering, Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin, 150090, China
| | - Shaoqin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
17
|
Xu M, Tremblay PL, Ding R, Xiao J, Wang J, Kang Y, Zhang T. Photo-augmented PHB production from CO 2 or fructose by Cupriavidus necator and shape-optimized CdS nanorods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142050. [PMID: 32898811 DOI: 10.1016/j.scitotenv.2020.142050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Particulate photocatalysts developed for the solar energy-driven reduction of the greenhouse gas CO2 have a small product range and low specificity. Hybrid photosynthesis expands the number of products with photocatalysts harvesting sunlight and transferring charges to microbes harboring versatile metabolisms for bioproduction. Besides CO2, abiotic photocatalysts have been employed to increase microbial production yields of reduced compounds from organic carbon substrates. Most single-reactor hybrid photosynthesis systems comprise CdS assembled in situ by microbial activity. This approach limits optimization of the morphology, crystal structure, and crystallinity of CdS for higher performance, which is usually done via synthesis methods incompatible with life. Here, shape and activity optimized CdS nanorods were hydrothermally produced and subsequently applied to Cupriavidus necator for the heterotrophic and autotrophic production of the bioplastic polyhydroxybutyrate (PHB). C. necator with CdS NR under light produced 1.5 times more PHB when compared to the same bacterium with suboptimal commercially-available CdS. Illuminated C. necator with CdS NR synthesized 1.41 g PHB from fructose over 120 h and 28 mg PHB from CO2 over 48 h. Interestingly, the beneficial effect of CdS NR was specific to C. necator as the metabolism of other microbes often employed for bioproduction including yeast and bacteria was negatively impacted. These results demonstrate that hybrid photosynthesis is more productive when the photocatalyst characteristics are optimized via a separated synthesis process prior to being coupled with microbes. Furthermore, bioproduction improvement by CdS-based photocatalyst requires specific microbial species highlighting the importance of screening efforts for the development of performant hybrid photosynthesis.
Collapse
Affiliation(s)
- Mengying Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ran Ding
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianxun Xiao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Junting Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yu Kang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
18
|
Batrice RJ, Gordon JC. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO 2 reduction. RSC Adv 2020; 11:87-113. [PMID: 35423038 PMCID: PMC8691073 DOI: 10.1039/d0ra07790a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Solar energy has been used for decades for the direct production of electricity in various industries and devices; however, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuel combustion. The common feedstocks for producing such solar fuels are carbon dioxide and water, yet only the photoconversion of carbon dioxide presents the opportunity to generate liquid fuels capable of integrating into our existing infrastructure, while simultaneously removing atmospheric greenhouse gas pollution. This review presents recent advances in photochemical solar fuel production technology. Although efforts in this field have created an incredible number of methods to convert carbon dioxide into gaseous and liquid fuels, these can generally be classified under one of four categories based on how incident sunlight is utilised: solar concentration for thermoconversion (Category 1), transformation toward electroconversion (Category 2), natural photosynthesis for bioconversion (Category 3), and artificial photosynthesis for direct photoconversion (Category 4). Select examples of developments within each of these categories is presented, showing the state-of-the-art in the use of carbon dioxide as a suitable feedstock for solar fuel production. Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.![]()
Collapse
Affiliation(s)
- Rami J Batrice
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - John C Gordon
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
19
|
Sahoo PC, Pant D, Kumar M, Puri S, Ramakumar S. Material–Microbe Interfaces for Solar-Driven CO2 Bioelectrosynthesis. Trends Biotechnol 2020; 38:1245-1261. [DOI: 10.1016/j.tibtech.2020.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
|
20
|
Stewart KN, Domaille DW. Enhancing Biosynthesis and Manipulating Flux in Whole Cells with Abiotic Catalysis. Chembiochem 2020; 22:469-477. [PMID: 32851745 DOI: 10.1002/cbic.202000458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Indexed: 01/08/2023]
Abstract
Metabolic engineering uses genetic strategies to drive flux through desired pathways. Recent work with electrochemical, photochemical, and chemocatalytic setups has revealed that these systems can also expand metabolic pathways and manipulate flux in whole cells. Electrochemical systems add or remove electrons from metabolic pathways to direct flux to more- or less-reduced products. Photochemical systems act as synthetic light-harvesting complexes and yield artificial photosynthetic organisms. Biocompatible chemocatalysis increases product scope, streamlines syntheses, and yields single-flask processes to deliver products that would be challenging to synthesize through biosynthetic means alone. Here, we exclusively highlight systems that combine abiotic systems with living whole cells, taking particular note of strategies that enable the merger of these typically disparate systems.
Collapse
Affiliation(s)
- Kelsey N Stewart
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| |
Collapse
|
21
|
Blank LM, Narancic T, Mampel J, Tiso T, O'Connor K. Biotechnological upcycling of plastic waste and other non-conventional feedstocks in a circular economy. Curr Opin Biotechnol 2019; 62:212-219. [PMID: 31881445 DOI: 10.1016/j.copbio.2019.11.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
The envisaged circular economy requires absolute carbon efficiency and in the long run abstinence from fossil feedstocks, and integration of industrial production with end-of-life waste management. Non-conventional feedstocks arising from industrial production and societal consumption such as CO2 and plastic waste may soon enable manufacture of multiple products from simple bulk chemicals to pharmaceuticals using biotechnology. The change to these feedstocks could be faster than expected by many, especially if the true cost, including the carbon footprint of products, is considered. The efficiency of biotechnological processes can be improved through metabolic engineering, which can help fulfill the promises of the Paris agreement.
Collapse
Affiliation(s)
- Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | - Tanja Narancic
- BEACON SFI Bioeconomy Research Centre and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jörg Mampel
- BRAIN AG, Darmstädter Str. 34-36, 64673 Zwingenberg, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Kevin O'Connor
- BEACON SFI Bioeconomy Research Centre and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|