1
|
Rossano-Becerril S, Sleutels T, Krooneman J, Euverink GJW. Rheological properties of thermally treated and digested sludge: Implications for energy requirements of pumps and agitators. BIORESOURCE TECHNOLOGY 2024; 408:131153. [PMID: 39069141 DOI: 10.1016/j.biortech.2024.131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Understanding sludge rheology and optimizing equipment performance is crucial for energy efficiency in wastewater treatment plants (WWTPs). This study examined sludge rheology after thermal hydrolysis pre-treatment (THP) at 60, 80, and 120 °C for 2 h, followed by anaerobic digestion (AD) at 37 °C for 20 days, and assessed impacts on pump and agitator performance. Post-treatment, sludge showed reduced viscosity and improved flowability, indicated by changes in Herschel-Bulkley parameters, enhancing pump and agitator efficiency, particularly at 120 °C. These rheological improvements were correlated to the solubilization of sludge components after THP and solids reduction after AD, highlighting the interconnectedness of rheology and treatment outcomes. Despite high heat demands, an energy balance showed that THP scenarios, especially at 120 °C, had lower energy requirements for pumps and agitators, leading to energy savings without increased heat consumption. These findings underscore the influence of rheological changes in improving energy efficiency in WWTPs.
Collapse
Affiliation(s)
- Sergio Rossano-Becerril
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Tom Sleutels
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Janneke Krooneman
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Research Center Biobased Economy, Hanze University of Applied Sciences, Zernikeplein 11, 9747 AS Groningen, the Netherlands
| | - Gert Jan Willem Euverink
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Gao Q, Li L, Wang K, Zhao Q. Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering (Basel) 2023; 10:1084. [PMID: 37760186 PMCID: PMC10525600 DOI: 10.3390/bioengineering10091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing global population and urbanization have led to a pressing need for effective solutions to manage the organic fraction of municipal solid waste (OFMSW). High-solids anaerobic digestion (HS-AD) has garnered attention as a sustainable technology that offers reduced water demand and energy consumption, and an increased biogas production rate. However, challenges such as rheology complexities and slow mass transfer hinder its widespread application. To address these limitations, this review emphasizes the importance of process optimization and the mass transfer enhancement of HS-AD, and summarizes various strategies for enhancing mass transfer in the field of HS-AD for the OFMSW, including substrate pretreatments, mixing strategies, and the addition of biochar. Additionally, the incorporation of innovative reactor designs, substrate pretreatment, the use of advanced modeling and simulation techniques, and the novel conductive materials need to be investigated in future studies to promote a better coupling between mass transfer and methane production. This review provides support and guidance to promote HS-AD technology as a more viable solution for sustainable waste management and resource recovery.
Collapse
Affiliation(s)
| | | | | | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Yoosefian SH, Ebrahimi R, Hosseinzadeh Samani B, Maleki A. Digestion of lignocellulosic biomass under an innovative pneu-mechanical system and optimization of process. J Biotechnol 2023; 374:70-79. [PMID: 37541624 DOI: 10.1016/j.jbiotec.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this study, an anaerobic pneumatic mechanical digester (PMD) was designed for the first time to investigate the impact of pneumatic agitator on increasing the bioethanol production and compared with a mechanical digester (MD). Fermentation was performed during an optimized pretreatment and hydrolysis process by RSM (Response Surface Method). Ultrasound optimized points (the time values, the acid concentration, and the biomass load) were 30 min, 1.95% v/v, and 6%, and hydrolysis was done within 45 min at the acid concentration of 2.04% v/v and temperature of 148.4 °C. The hydrolysis solutions were poured and the fermentation process took place within 20 days in the PMD and MD. The sampling sequence was every 5 days. According to the results, the PMD could produce bioethanol more than the MD by 27.94%. Besides, CO, H2S and O2 were measured through fermentation. In PMD, the amount of H2S and O2 was lower than the MD, but then the production of CO in the PMD was meaningfully higher. Finally, by the application of the PMD, the amount of harmful mixtures produced throughout the process can be controlled. It can be said that with the new method designed in this study, it is possible to take an important step in the biorefinery and use the biomass produced in nature in an economical and environmentally friendly way.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| | - Rahim Ebrahimi
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran.
| | | | - Ali Maleki
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| |
Collapse
|
4
|
Zhou H, Zhao Q, Jiang J, Wang Z, Li L, Gao Q, Wang K. Enhancing of pretreatment on high solids enzymatic hydrolysis of food waste: Sugar yield, trimming of substrate structure. BIORESOURCE TECHNOLOGY 2023; 379:128989. [PMID: 37003452 DOI: 10.1016/j.biortech.2023.128989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The development of high solids enzymatic hydrolysis (HSEH) technology is a promising way to improve the efficiency of bioenergy production from solid waste. Pretreatment methods such as ultrasound (USP), freeze-thaw (FTP), hydrothermal (HTP), and dried (DRD) were carried out to evaluate the effect and mechanism of the pretreatment methods on the HSEH of FW. The reducing sugar of HTP and DRD reached 94.75% and 94.92% of the theoretical value. HTP and DRD could reduce the crystallinity of FW. DRD resulted in lower alignment and the occurrence of fractures of the substrate and exposed the α-1,4 glycosidic bond of starch. The high destructive power of HTP and DRD reduced the obstacles caused by the high solid content. Moreover, DRD consumed only 27.62% of the total energy of HTP. DRD could be a promising pretreatment methods for glucose recovery for its high product yield, significant substrate destruction, and economic feasibility.
Collapse
Affiliation(s)
- Huimin Zhou
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhaoxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lili Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Wi J, Lee S, Ahn H. Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure. Bioengineering (Basel) 2023; 10:bioengineering10040432. [PMID: 37106619 PMCID: PMC10135913 DOI: 10.3390/bioengineering10040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Inoculation is a widely used method to improve the efficiency of anaerobic digestion (AD) with a high organic load. This study was conducted to prove the potential of dairy manure as an inoculum source for AD of swine manure. Furthermore, an appropriate inoculum-to-substrate (I/S) ratio was determined to improve methane yield and reduce the required time of AD. We carried out 176 days of anaerobic digestion for five different I/S ratios (3, 1, and 0.3 on a volatile solid basis, dairy manure alone, and swine manure alone) of manure, using solid container submerged lab-scale reactors in mesophilic conditions. As a result, solid-state swine manure inoculated with dairy manure could be digested without inhibition caused by ammonia and volatile fatty acid accumulation. The highest methane yield potential was observed in I/S ratios 1 and 0.3, as 133 and 145 mL CH4·g−1-VS, respectively. The lag phase of swine manure alone was more extended, 41 to 47 days, than other treatments containing dairy manure, directly related to tardy startup. These results revealed that dairy manure can be used as an inoculum source for AD of swine manure. The proper I/S ratios leading to successful AD of swine manure were 1 and 0.3.
Collapse
|
6
|
Investigation of the rheological response of a bio-liquefied formaldehyde resin-based precursor for electrospinning. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Chen J, Risberg M, Westerlund L, Jansson U, Wang C, Lu X, Ji X. Heat-transfer performance of twisted tubes for highly viscous food waste slurry from biogas plants. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:74. [PMID: 35794672 PMCID: PMC9261055 DOI: 10.1186/s13068-022-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The use of food waste as feedstock shows high production of biogas via anaerobic digestion, but requires efficient heat transfer in food waste slurry at heating and cooling processes. The lack of rheological properties hampered the research on the heat-transfer process for food waste slurry. Referentially, the twisted hexagonal and elliptical rubes have been proved as the optimal enhanced geometry for heat transfer of medium viscous slurries with non-Newtonian behavior and Newtonian fluids, respectively. It remains unknown whether improvements can be achieved by using twisted geometries in combination with food waste slurry in processes including heating and cooling.
Results
Food waste slurry was observed to exhibit highly viscous, significant temperature-dependence, and strongly shear-thinning rheological characteristics. Experiments confirmed the heat-transfer enhancement of twisted hexagonal tubes for food waste slurry and validated the computational fluid dynamics-based simulations with an average deviation of 14.2%. Twisted hexagonal tubes were observed to be more effective at low-temperature differences and possess an enhancement factor of up to 2.75; while twisted elliptical tubes only exhibited limited heat-transfer enhancement at high Reynolds numbers. The heat-transfer enhancement achieved by twisted hexagonal tubes was attributed to the low dynamic viscosity in the boundary layer induced by the strong and continuous shear effect near the walls of the tube.
Conclusions
This study determined the rheological properties of food waste slurry, confirmed the heat-transfer enhancement of the twisted hexagonal tubes experimentally and numerically, and revealed the mechanism of heat-transfer enhancement based on shear rate distributions.
Collapse
|
8
|
Chen Y, Yu H, Chen J, Lu X, Ji X. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Shen R, Chen R, Yao Z, Feng J, Yu J, Li Z, Luo J, Zhao L. Engineering and microbial characteristics of innovative lab and pilot continuous dry anaerobic co-digestion system fed with cow dung and corn straw. BIORESOURCE TECHNOLOGY 2021; 342:126073. [PMID: 34606924 DOI: 10.1016/j.biortech.2021.126073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Dry anaerobic digestion (dry-AD) allows high-solid digestion; however, dry-AD application is limited because it is prone to blockage and intermediate inhibition. Here, we reported innovative continuous dry co-digestion systems at both lab and pilot scales. The effects of digestate recirculation ratio, dry mass ratio of cow dung to corn straw (CD:CS), and TS content on the digestion performance were investigated. The effects of the three factors were ranked as follows: TS content > CD:CS > digestate recirculation ratio. The daily biogas production rate reached 0.386 NL/d/g VS with the optimal parameter combination, which was determined to be TS content of 30%, a substrate ratio of 1:3, and a digestate recirculation ratio of 40%. In addition, increasing the CD:CS and TS content increased digestate viscosity, which inhibited biogas production; however, increased abundance of Proteiniphilum and acetoclastic methanogens facilitated biogas production. This study provides empirical support for further application of dry-AD.
Collapse
Affiliation(s)
- Ruixia Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Runlu Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture, Beijing 100125, PR China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jing Feng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture, Beijing 100125, PR China
| | - Jiadong Yu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture, Beijing 100125, PR China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Juan Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
10
|
Shen B, Zhan X, He Y, Sun Z, Long J, Yang Y, Li X. Computational fluid dynamic analysis of mass transfer and hydrodynamics in a planetary centrifugal bioreactor. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0817-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Cui MH, Zheng ZY, Yang M, Sangeetha T, Zhang Y, Liu HB, Fu B, Liu H, Chen CJ. Revealing hydrodynamics and energy efficiency of mixing for high-solid anaerobic digestion of waste activated sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:1-10. [PMID: 33341689 DOI: 10.1016/j.wasman.2020.11.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a feasible and promising technique to deal with emerging waste activated sludge issues. In this work, the hydrodynamics and digestion performance of horizontal anaerobic systems equipped with double-bladed impeller and ribbon impeller were investigated. Simulation using computational fluid dynamics technique visually showcased the favorable mixing status implementing ribbon impeller. The mixing modes were considered as the major motivation for the difference of mixing efficiencies. Tracing experiment indicated that the minimum thorough mixing time with ribbon impeller was 20 min at a rotation speed of 50 rpm, whereas it was 360 min for the double-bladed impeller under similar conditions. The superior mixing performance of ribbon impeller resulted in better anaerobic digestion and energy efficiency outputs. The digester employing ribbon impeller obtained an ultimate biogas yield of 340.38 ± 15.91 mL/g VS (corresponding methane yield of 210.34 ± 7.55 mL/g VS) and produced a surplus energy of 16.23 ± 0.76 MJ/(m3·d). This study thus ascertained that ribbon impeller was proficient for high-solid anaerobic digestion and it will prominently benefit future system designs.
Collapse
Affiliation(s)
- Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - Zhi-Yong Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - Meng Yang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Thangavel Sangeetha
- Department of Energy and Refrigerating Air-Conditioning Engineering and Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - Hong-Bo Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - Bo Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China.
| | - Chong-Jun Chen
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, PR China
| |
Collapse
|
12
|
Peng W, Lü F, Hao L, Zhang H, Shao L, He P. Digestate management for high-solid anaerobic digestion of organic wastes: A review. BIORESOURCE TECHNOLOGY 2020; 297:122485. [PMID: 31810738 DOI: 10.1016/j.biortech.2019.122485] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Digestate management for anaerobic digestion (AD) is becoming a bottleneck of the sustainability of AD plants when the use of digestate for agricultural application is restricted due to nutrient surplus and low market acceptance. Digestate quality and treatment in high solid anaerobic digestion (HSAD) can be better than conventional low-solid system. The rheological behavior of digestate in high solid anaerobic digestion (HSAD) can have a great impact on the energy consumption of digestate management. After post-conditioning guided by rheological parameters, the solid digestate can be further treated based on the integrated solutions to enhance the energy efficiency or nutrients recovery. The environmental impacts for some core parts of those integrated systems were also evaluated in this study. This article presented a critical review of recent investigations of digestate management for HSAD, especially focusing on the rheology of HSAD digestate, integrated solutions and their environmental performances.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liping Hao
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Li Y, Song Z, Yuan Y, Zhang Q, Zhu H. Rheology improvement in an osmotic membrane bioreactor for waste sludge anaerobic digestion and the implication on agitation energy consumption. BIORESOURCE TECHNOLOGY 2020; 295:122313. [PMID: 31670203 DOI: 10.1016/j.biortech.2019.122313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Sludge rheology is an essential factor for anaerobic digestion (AD) processes to control the agitation energy consumption. In this study, the sludge rheology was characterized for an osmotic membrane bioreactor and a conventional sludge anaerobic digestion reactor as the solid content being increased from 3.5-3.7% to 7.5-7.7%. The flow curves were fitted using different rheological models and the mechanism was discussed. The sludge from the osmotic membrane bioreactor exhibited obviously better rheological properties than that of the conventional reactor at a solid content of 7.5-7.7%. Larger particles induced by less negative zeta potential and higher extracellular polymeric substances, together with the higher conductivity resulted by reverse salt flux in the osmotic membrane bioreactor, improved the sludge rheology due to reduced interactions between particles. As a result, the agitation energy consumption of the osmotic membrane bioreactor can save up to 34-39% compared with the conventional one at total solid content of 7.5-7.7%.
Collapse
Affiliation(s)
- Yunqian Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zheyuan Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yuan Yuan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|