1
|
Percy AJ, Edwin M. A comprehensive review on the production and enhancement techniques of gaseous biofuels and their applications in IC engines with special reference to the associated performance and emission characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173087. [PMID: 38763185 DOI: 10.1016/j.scitotenv.2024.173087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
The increasing global demand for energy, coupled with environmental concerns associated with fossil fuels, has led to the exploration of alternative fuel sources. Gaseous biofuels, derived from organic matter, have gained attention due to their renewable nature and clean combustion characteristics. The paper extensively explores production pathways for gaseous biofuels, including biogas, syngas, and hydrogen, providing insightful discussions on various sources and processes. The energy content, physical, and chemical properties of gaseous biofuels have been analysed, highlighting their potential as viable alternatives to conventional fuels. Distinctive properties of biogas, producer gas, and hydrogen that impact combustion characteristics and engine efficiency in IC engines are underscored. Furthermore, the review systematically reviews enhancement techniques for gaseous biofuels, encompassing strategies to augment quality, purity, and combustion efficiency. Various methods, ranging from substrate pretreatment for biogas to membrane separation for hydrogen, illustrate effective means of enhancing fuel performance. Rigorous examination of performance parameters such as brake thermal efficiency, specific fuel consumption and emissions characteristics such as NOx, CO, CO2, HC of gaseous biofuels in dual-fuel mode emphasizes efficiency and environmental impact, offering valuable insights into their feasibility as engine fuels. The findings of this review will serve as a valuable resource for researchers, engineers, and policymakers involved in alternative fuels and sustainable transportation, while also highlighting the need for further research and development to fully unlock the potential of gaseous biofuels in IC engines.
Collapse
Affiliation(s)
- A Jemila Percy
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India
| | - M Edwin
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India.
| |
Collapse
|
2
|
Haroun B, Bahreini G, Zaman M, Jang E, Okoye F, Elbeshbishy E, Santoro D, Walton J, Al-Omari A, Muller C, Bell K, Nakhla G. Vacuum-enhanced anaerobic fermentation: Achieving process intensification, thickening and improved hydrolysis and VFA yields in a single treatment step. WATER RESEARCH 2022; 220:118719. [PMID: 35704979 DOI: 10.1016/j.watres.2022.118719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
This study assessed the feasibility of a novel vacuum-enhanced anaerobic digestion technology, referred to as IntensiCarbTM (IC), under mild vacuum pressure (110 mbar), compared to a control (conventional fermenter), and evaluated the impact of the vacuum on the activities of various microbial groups. Both fermenters (test and control) were operated with mixed (50% v/v) municipal sludge at solids concentrations of 2-2.5%, pH of 7.8-8.1, 40-45 °C, a theoretical solids retention time (SRT) of 3 days with different hydraulic retention times (HRT). The intensification factor (IF) of the IC, defined as SRT/HRT, was controlled at 1.3 and 2.0. Simultaneous thickening and fermentation intensification were achieved. Compared with the control, the IC, despite the shorter HRTs, achieved 29.5 to 90.2% increase in the VFA yield (79 to 116 mg ΔVFA/ g VSS vs 61 mg ΔVFA/ g VSS), and 16.2% to 56.4% increase (280 to 377 mg ΔsCOD/ g VSS vs 241 mg ΔsCOD/ g VSS), in the hydrolysis yield. Fermentate from the IC exhibited comparable specific denitrification rates to acetate. Further, the solids-free condensate contained low nutrient concentrations, and thus was far superior to a typical centrates from dewatering as a carbon source. No adverse effects of vacuum on the activity of fermentative bacteria and methanogens were observed. This study demonstrated that the IC can be deployed as an intensification technology for both fermentation and anaerobic digestion of biosolids with the additional significant advantage, i.e. elimination of sidestream ammonia treatment requirements.
Collapse
Affiliation(s)
- Basem Haroun
- Chemical and Biochemical Engineering, University of Western Ontario, Canada; Water Pollution Research Department, National Research Center, 33 El Bohoth St., P.O.12622, Dokki, Giza, Egypt
| | | | - Masuduz Zaman
- Chemical and Biochemical Engineering, University of Western Ontario, Canada
| | | | - Frances Okoye
- Civil Engineering Department, Ryerson University, Canada
| | | | | | | | | | | | | | - George Nakhla
- Chemical and Biochemical Engineering, University of Western Ontario, Canada; Civil and Environmental Engineering, University of Western Ontario, Canada.
| |
Collapse
|
3
|
Okoye F, Kakar FL, Elbeshbishy E, Bell K, Muller C, Jimenez J, Al‐Omari A, Santoro D, Jang E, Walton J, Bahreini G, Zaman M, Nakhla G, Hazi F, Takacs I, Murthy S, Rosso D. A proof-of-concept experimental study for vacuum-driven anaerobic biosolids fermentation using the IntensiCarb technology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10694. [PMID: 35243725 PMCID: PMC9311080 DOI: 10.1002/wer.10694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 05/06/2023]
Abstract
This study demonstrates the potential of an innovative anaerobic treatment technology for municipal biosolids (IntensiCarb), which relies on vacuum evaporation to decouple solids and hydraulic retention times (SRT and HRT). We present proof-of-concept experiments using primary sludge and thickened waste activated sludge (50-50 v/v mixture) as feed for fermentation and carbon upgrading with the IntensiCarb unit. IntensiCarb fully decoupled the HRT and SRT in continuously stirred anaerobic reactors (CSAR) to achieve two intensification factors, that is, 1.3 and 2, while keeping the SRT constant at 3 days (including in the control fermenter). The intensified CSARs were compared to a conventional control system to determine the yields of particulate hydrolysis, VFA production, and nitrogen partitioning between fermentate and condensate. The intensified CSAR operating at an intensification factor 2 achieved a 65% improvement in particulate solubilization. Almost 50% of total ammonia was extracted without pH adjustment, while carbon was retained in the fermentate. Based on these results, the IntensiCarb technology allows water resource recovery facilities to achieve a high degree of plant-wide intensification while partitioning nutrients into different streams and thickening solids. PRACTITIONER POINTS: The IntensiCarb reactor can decouple hydraulic (HRT) and solids (SRT) retention times in anaerobic systems while also increasing particulate hydrolysis and overall plant capacity. Using vacuum as driving force of the IntensiCarb technology, the system could achieve thickening, digestion, and partial dewatering in the same unit-thus eliminating the complexity of multi-stage biosolids treatment lines. The ability to partition nutrients between particulate, fermentate, and condensate assigns to the IntensiCarb unit a key role in recovery strategies for value-added products such as nitrogen, phosphorus, and carbon, which can be recovered separately and independently.
Collapse
Affiliation(s)
- Frances Okoye
- Environmental Research for Resource Recovery Group, Department of Civil EngineeringRyerson UniversityTorontoCanada
| | - Farokh Laqa Kakar
- Environmental Research for Resource Recovery Group, Department of Civil EngineeringRyerson UniversityTorontoCanada
| | - Elsayed Elbeshbishy
- Environmental Research for Resource Recovery Group, Department of Civil EngineeringRyerson UniversityTorontoCanada
| | - Kati Bell
- Brown and CaldwellWalnut CreekCaliforniaUSA
| | | | | | | | | | | | | | - Gholamreza Bahreini
- Department of Civil and Environmental EngineeringWestern UniversityLondonCanada
| | - Masuduz Zaman
- Department of Civil and Environmental EngineeringWestern UniversityLondonCanada
| | - George Nakhla
- Department of Civil and Environmental EngineeringWestern UniversityLondonCanada
| | | | | | | | - Diego Rosso
- Civil and Environmental Engineering DepartmentUniversity of CaliforniaIrvineCaliforniaUSA
- Water‐Energy Nexus (WEX) CenterUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
4
|
Innard N, Chong JPJ. The challenges of monitoring and manipulating anaerobic microbial communities. BIORESOURCE TECHNOLOGY 2022; 344:126326. [PMID: 34780902 DOI: 10.1016/j.biortech.2021.126326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed anaerobic microbial communities are a key component in valorization of waste biomass via anaerobic digestion. Similar microbial communities are important as soil and animal microbiomes and have played a critical role in shaping the planet as it is today. Understanding how individual species within communities interact with others and their environment is important for improving performance and potential applications of an inherently green technology. Here, the challenges associated with making measurements critical to assessing the status of anaerobic microbial communities are considered. How these measurements could be incorporated into control philosophies and augment the potential of anaerobic microbial communities to produce different and higher value products from waste materials are discussed. The benefits and pitfalls of current genetic and molecular approaches to measuring and manipulating anaerobic microbial communities and the challenges which should be addressed to realise the potential of this exciting technology are explored.
Collapse
Affiliation(s)
- Nathan Innard
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK.
| |
Collapse
|
5
|
Qi WK, Liu LF, Shi Q, Wang C, Li YY, Peng Y. Detailed composition evolution of food waste in an intermittent self-agitation anaerobic digestion baffled reactor. BIORESOURCE TECHNOLOGY 2021; 320:124342. [PMID: 33157439 DOI: 10.1016/j.biortech.2020.124342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
This study used an intermittent self-agitation anaerobic baffled reactor (SA-ABR) to treat food waste. The organic matter and detailed composition evolution were analyzed under continuous operation. The gas production rate was 2.43 ± 0.18 L-Gas/d/L-Re, and the biogas conversion was 0.94 L-Gas/g-TS. The effluent concentration of total chemical oxygen demand (COD) was 22.5 ± 2.44 g/L, and the removal rate of soluble COD was always over 97%. In this study, the removal rates of carbohydrate, protein, and lipids in the SA-ABR treatment were 95%, 60%, and 85%, respectively, and the concentrations were 0.11 g/L, 0.32 g/L, and 0.33 g/L, respectively. The conversion of soluble organic matter was much higher than that of insoluble substrates. The concentration of soluble pollutants was significantly lower than that of pollutants in suspended matter. The treatment of organic matter in the first half of the SA-ABR was 85-100% that of the entire reactor.
Collapse
Affiliation(s)
- Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Li-Fang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Wang
- Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
6
|
Miryahyaei S, Das T, Othman M, Batstone D, Eshtiaghi N. Anaerobic co-digestion of sewage sludge with cellulose, protein, and lipids: Role of rheology and digestibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139214. [PMID: 32417486 DOI: 10.1016/j.scitotenv.2020.139214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Rheology is known to have an impact on the performance of digesters, but the effect of additional substrates (co-digestion) is poorly understood. The main objective of this study was to investigate the effects of the addition of cellulose, protein and lipids to substrates on the rheological behaviour and biogas production of the mixture of primary sludge (PS) and waste-activated sludge (WAS) in a batch system. A mixture of PS and WAS to form the main substrate was anaerobically co-digested with different types of organic matter (cellulose, protein and lipids) as co-substrates at different co-substrate to main substrate ratios of 2-8 (wt%) under mesophilic conditions and below ammonia inhibition levels. Yield stress (τy) and the flow consistency index (k) of the combined feed in the case of cellulose and protein were significantly dependent on the amount of co-substrate added, while there was an insignificant impact on these properties when lipids were added. Cellulose significantly increased τy and k in the feed, which resulted in poor fluidity and the improper homogenisation of the digester content, and consequently decreased the biogas yield. In contrast, the biogas yield was improved through the addition of 2% to 6% protein despite an increase in τy and k of the feed, but the methane yield decreased at 7% and 8% levels of protein concentration. This observation indicates that the threshold for τy and k of the digester media depends on the organic nature and digestibility of the substrate. There was no significant impact on the flow properties of the initial mixture when lipids were added, and their addition increased the biogas yield. A first-order kinetic reaction model was used for predicting the yield of methane from these digesters. The rate constant values revealed an increasing trend, with the highest for protein then lipids then cellulose.
Collapse
Affiliation(s)
- S Miryahyaei
- Chemical and Environmental Engineering, School of Engineering, RMIT University, 3001 Melbourne, Australia
| | - T Das
- Chemical and Environmental Engineering, School of Engineering, RMIT University, 3001 Melbourne, Australia
| | - M Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, 3001 Melbourne, Australia
| | - D Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia
| | - N Eshtiaghi
- Chemical and Environmental Engineering, School of Engineering, RMIT University, 3001 Melbourne, Australia.
| |
Collapse
|