1
|
de Siqueira EC, de Andrade Alves A, da Costa E Silva PE, de Barros MPS, Houllou LM. Polyhydroxyalkanoates and exopolysaccharides: An alternative for valuation of the co-production of microbial biopolymers. Biotechnol Prog 2024; 40:e3412. [PMID: 37985126 DOI: 10.1002/btpr.3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPSs) belong to a class of abundant biopolymers produced by various fermenting microorganisms. These biocompounds have high value-added potential and can be produced concurrently. Co-production of PHAs and EPSs is a strategy employed by researchers to reduce costs associated with large-scale production. EPSs and PHAs are non-toxic, biocompatible, and biodegradable, making them suitable for various industrial sectors, including packaging and the medical and pharmaceutical industries. These biopolymers can be derived from agro-industrial residues, thus contributing to the bioeconomy by producing high-value-added products. This review investigates approaches for simultaneously synthesizing PHAs and EPSs using different carbon sources and microorganisms.
Collapse
Affiliation(s)
| | - Aline de Andrade Alves
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Cidade Universitária, Recife, Brazil
| | | | | | | |
Collapse
|
2
|
Devadarshini D, Mohapatra S, Pati S, Maity S, Rath CC, Jena PK, Samantaray D. Evaluation of PHAs production by mixed bacterial culture under submerged fermentation. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Qin R, Zhu Y, Ai M, Jia X. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass. Front Bioeng Biotechnol 2022; 10:1023325. [PMID: 36338139 PMCID: PMC9626825 DOI: 10.3389/fbioe.2022.1023325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
The demand for non-petroleum-based, especially biodegradable plastics has been on the rise in the last decades. Medium-chain-length polyhydroxyalkanoate (mcl-PHA) is a biopolymer composed of 6–14 carbon atoms produced from renewable feedstocks and has become the focus of research. In recent years, researchers aimed to overcome the disadvantages of single strains, and artificial microbial consortia have been developed into efficient platforms. In this work, we reconstructed the previously developed microbial consortium composed of engineered Pseudomonas putida KT∆ABZF (p2-a-J) and Escherichia coli ∆4D (ACP-SCLAC). The maximum titer of mcl-PHA reached 3.98 g/L using 10 g/L glucose, 5 g/L octanoic acid as substrates by the engineered P. putida KT∆ABZF (p2-a-J). On the other hand, the maximum synthesis capacity of the engineered E. coli ∆4D (ACP-SCLAC) was enhanced to 3.38 g/L acetic acid and 0.67 g/L free fatty acids (FFAs) using 10 g/L xylose as substrate. Based on the concept of “nutrient supply-detoxification,” the engineered E. coli ∆4D (ACP-SCLAC) provided nutrient for the engineered P. putida KT∆ABZF (p2-a-J) and it acted to detoxify the substrates. Through this functional division and rational design of the metabolic pathways, the engineered P. putida-E. coli microbial consortium could produce 1.30 g/L of mcl-PHA from 10 g/L glucose and xylose. Finally, the consortium produced 1.02 g/L of mcl-PHA using lignocellulosic hydrolysate containing 10.50 g/L glucose and 10.21 g/L xylose as the substrate. The consortium developed in this study has good potential for mcl-PHA production and provides a valuable reference for the production of high-value biological products using inexpensive carbon sources.
Collapse
Affiliation(s)
- Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Xiaoqiang Jia,
| |
Collapse
|
4
|
Zhu Y, Ai M, Jia X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front Bioeng Biotechnol 2022; 9:794331. [PMID: 35083203 PMCID: PMC8784772 DOI: 10.3389/fbioe.2021.794331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have attracted much attention as a good substitute for petroleum-based plastics, especially mcl-PHA due to their superior physical and mechanical properties with broader applications. Artificial microbial consortia can solve the problems of low metabolic capacity of single engineered strains and low conversion efficiency of natural consortia while expanding the scope of substrate utilization. Therefore, the use of artificial microbial consortia is considered a promising method for the production of mcl-PHA. In this work, we designed and constructed a microbial consortium composed of engineered Escherichia coli MG1655 and Pseudomonas putida KT2440 based on the "nutrition supply-detoxification" concept, which improved mcl-PHA production from glucose-xylose mixtures. An engineered E. coli that preferentially uses xylose was engineered with an enhanced ability to secrete acetic acid and free fatty acids (FFAs), producing 6.44 g/L acetic acid and 2.51 g/L FFAs with 20 g/L xylose as substrate. The mcl-PHA producing strain of P. putida in the microbial consortium has been engineered to enhance its ability to convert acetic acid and FFAs into mcl-PHA, producing 0.75 g/L mcl-PHA with mixed substrates consisting of glucose, acetic acid, and octanoate, while also reducing the growth inhibition of E. coli by acetic acid. The further developed artificial microbial consortium finally produced 1.32 g/L of mcl-PHA from 20 g/L of a glucose-xylose mixture (1:1) after substrate competition control and process optimization. The substrate utilization and product synthesis functions were successfully divided into the two strains in the constructed artificial microbial consortium, and a mutually beneficial symbiosis of "nutrition supply-detoxification" with a relatively high mcl-PHA titer was achieved, enabling the efficient accumulation of mcl-PHA. The consortium developed in this study is a potential platform for mcl-PHA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
5
|
The power of two: An artificial microbial consortium for the conversion of inulin into Polyhydroxyalkanoates. Int J Biol Macromol 2021; 189:494-502. [PMID: 34428488 DOI: 10.1016/j.ijbiomac.2021.08.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
One of the major issues for the microbial production of polyhydroxyalkanoates (PHA) is to secure renewable, non-food biomass feedstocks to feed the fermentation process. Inulin, a polydisperse fructan that accumulates as reserve polysaccharide in the roots of several low-requirement crops, has the potential to face this challenge. In this work, a "substrate facilitator" microbial consortium was designed to address PHA production using inulin as feedstock. A microbial collection of Bacillus species was screened for efficient inulinase producer and the genome of the selected strain, RHF15, identified as Bacillus gibsonii, was analysed unravelling its wide catabolic potential. RHF15 was co-cultured with Cupriavidus necator, an established PHA producer, lacking the ability to metabolize inulin. A Central Composite Rotary Design (CCRD) was applied to optimise PHA synthesis from inulin by the designed artificial microbial consortium, assessing the impact of species inoculum ratio and inulin and N-source concentrations. In the optimized conditions, a maximum of 1.9 g L-1 of Polyhydroxybutyrate (PHB), corresponding to ~80% (gpolymer/gCDW) polymer content was achieved. The investigated approach represents an effective process optimization method, potentially applicable to the production of PHA from other complex C- sources.
Collapse
|
6
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
7
|
Organocatalyzed β-pinene polymerization in UV light: Assessment of reaction conditions and material characterization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Ai M, Zhu Y, Jia X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J Microbiol Biotechnol 2021; 37:2. [PMID: 33392870 DOI: 10.1007/s11274-020-02986-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of high-molecular-weight polyesters made from hydroxy fatty acid monomers. PHAs produced by microorganisms have diverse structures, variable physical properties, and good biodegradability. They exhibit similar physical properties to petroleum-based plastics but are much more environmentally friendly. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), in particular, have attracted much interest because of their low crystallinity, low glass transition temperature, low tensile strength, high elongation at break, and customizable structure. Nevertheless, high production costs have hindered their practical application. The use of genetically modified organisms can reduce production costs by expanding the scope of substrate utilization, improving the conversion efficiency of substrate to product, and increasing the yield of mcl-PHAs. The yield of mcl-PHAs produced by a pure culture of an engineered microorganism was not high enough because of the limitations of the metabolic capacity of a single microorganism. The construction of artificial microbial consortia and the optimization of microbial co-cultivation have been studied. This type of approach avoids the addition of precursor substances and helps synthesize mcl-PHAs more efficiently. In this paper, we reviewed the design and construction principles and optimized control strategies for artificial microbial consortia that produce mcl-PHAs. We described the metabolic advantages of co-cultivating artificial microbial consortia using low-value substrates and discussed future perspectives on the production of mcl-PHAs using artificial microbial consortia.
Collapse
Affiliation(s)
- Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
9
|
Comprehensive characterization of elastomeric polyhydroxyalkanoate and its sensor applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111091. [DOI: 10.1016/j.msec.2020.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
|
10
|
Pinto-Ibieta F, Cea M, Cabrera F, Abanto M, Felissia FE, Area MC, Ciudad G. Strategy for biological co-production of levulinic acid and polyhydroxyalkanoates by using mixed microbial cultures fed with synthetic hemicellulose hydrolysate. BIORESOURCE TECHNOLOGY 2020; 309:123323. [PMID: 32299048 DOI: 10.1016/j.biortech.2020.123323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Hemicellulose hydrolysates (HH), which could be an interesting carbon source to feed mixed microbial cultures (MMC) able to accumulate high value-added compounds. This research focused on the evaluation of a culture strategy to achieve the simultaneous biological production of Levulinic Acid (LA) and Polyhydroxyalcanoates (PHA) by MMC fed with a synthetic HH (SHH). The culture strategy involves the use of sequential batch reactors (SBR) to select microorganisms capable of producing LA and PHA. This work proved that the cultivation strategy used allowed the biological production of LA, reaching 37%w/w when the SHH was composed of 85% pentoses. In addition, the simultaneous biological production of LA and PHB was possible when the SHH was enriched with acetate (45% pentoses - 50% acetate). Finally, this study showed that the composition of the SHH impacts directly on the selected microorganism genus and the type and quantity of the value-added compounds obtained.
Collapse
Affiliation(s)
- F Pinto-Ibieta
- Doctorate of Engineering Sciences with Specialization in Bioprocess, Universidad de La Frontera, Av. Francisco Salazar #01145, Temuco, Chile; Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | - M Cea
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F Cabrera
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Temuco, Chile
| | - M Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F E Felissia
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Misiones, Argentina, Félix de Azara 1552, Posadas, Argentina
| | - M C Area
- IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Misiones, Argentina, Félix de Azara 1552, Posadas, Argentina
| | - G Ciudad
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile.
| |
Collapse
|