1
|
Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane. ENERGIES 2022. [DOI: 10.3390/en15030911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A huge amount of organic waste is generated annually around the globe. The main sources of solid and liquid organic waste are municipalities and canning and food industries. Most of it is disposed of in an environmentally unfriendly way since none of the modern recycling technologies can cope with such immense volumes of waste. Microbiological and biotechnological approaches are extremely promising for solving this environmental problem. Moreover, organic waste can serve as the substrate to obtain alternative energy, such as biohydrogen (H2) and biomethane (CH4). This work aimed to design and test new technology for the degradation of food waste, coupled with biohydrogen and biomethane production, as well as liquid organic leachate purification. The effective treatment of waste was achieved due to the application of the specific granular microbial preparation. Microbiological and physicochemical methods were used to measure the fermentation parameters. As a result, a four-module direct flow installation efficiently couples spatial succession of anaerobic and aerobic bacteria with other micro- and macroorganisms to simultaneously recycle organic waste, remediate the resulting leachate, and generate biogas.
Collapse
|
2
|
Chen H, Wu J, Wang H, Zhou Y, Xiao B, Zhou L, Yu G, Yang M, Xiong Y, Wu S. Dark co-fermentation of rice straw and pig manure for biohydrogen production: effects of different inoculum pretreatments and substrate mixing ratio. ENVIRONMENTAL TECHNOLOGY 2021; 42:4539-4549. [PMID: 32529923 DOI: 10.1080/09593330.2020.1770340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Biohydrogen produced from agricultural waste through dark co-fermentation is an increasingly valuable source of renewable energy. Rice straw (RS) and pig manure (PM) are widely available waste products in Asia with complementary levels of carbon and nitrogen that together have a high biohydrogen production potential. However, no research has yet determined the ideal inoculum pretreatment method and mixing ratio for biohydrogen production using these resources. In this study, we tested biohydrogen production using three different inoculum pretreatment methods (acid, alkali and thermal) at five RS/PM ratios (1:0, 5:1, 3:1, 1:1 and 0:1, based on total solids). All three pretreatments promoted biohydrogen production with the increase of bioactivity of biohydrogen-producing organisms (compared with a control group), though acid was clearly superior to thermal or alkali. Using acid pretreatment and RS/PM ratio of 5:1 corresponded with a relatively low NH4+-N concentration (655.17 mg/L), a maximal cumulative biohydrogen production of 44.59 mL/g VSadded with a low methane production (<0.1%), a large butyric acid accumulation (1035.30 mg/L) and a biohydrogen conversion rate of 2.12%. The optimal pH for biohydrogen production from co-fermentation of RS and PM ranged from 5.0-5.5.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, People's Republic of China
| | - Jun Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, People's Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon, People's Republic of China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, People's Republic of China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, People's Republic of China
| | - Min Yang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| | - Ying Xiong
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, People's Republic of China
| | - Sha Wu
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| |
Collapse
|
3
|
Park JH, Chandrasekhar K, Jeon BH, Jang M, Liu Y, Kim SH. State-of-the-art technologies for continuous high-rate biohydrogen production. BIORESOURCE TECHNOLOGY 2021; 320:124304. [PMID: 33129085 DOI: 10.1016/j.biortech.2020.124304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Dark fermentation is a technically feasible technology for achieving carbon dioxide-free hydrogen production. This review presents the current findings on continuous hydrogen production using dark fermentation. Several operational strategies and reactor configurations have been suggested. The formation of attached mixed-culture microorganisms is a typical prerequisite for achieving high production rate, hydrogen yield, and resilience. To date, fixed-bed reactors and dynamic membrane bioreactors yielded higher biohydrogen performance than other configurations. The symbiosis between H2-producing bacteria and biofilm-forming bacteria was essential to avoid washout and maintain the high loading rates and hydrogenic metabolic flux. Recent research has initiated a more in-depth comparison of microbial community changes during dark fermentation, primarily with computational science techniques based on 16S rRNA gene sequencing investigations. Future techno-economic analysis of dark fermentative biohydrogen production and perspectives on unraveling mitigation mechanisms induced by attached microorganisms in dark fermentation processes are further discussed.
Collapse
Affiliation(s)
- Jong-Hun Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Ni K, Wang X, Lu Y, Guo L, Li X, Yang F. Exploring the silage quality of alfalfa ensiled with the residues of astragalus and hawthorn. BIORESOURCE TECHNOLOGY 2020; 297:122249. [PMID: 31761631 DOI: 10.1016/j.biortech.2019.122249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 05/11/2023]
Abstract
This study evaluated the effect of astragalus (AS) and hawthorn (HN) residues on the silage quality of alfalfa. Alfalfa was ensiled with additives (AS, HN and AS + HN) or without additives for 60 days. Results showed that the silage treated with AS and HN had lower contents of butyric acid and NH3-N compared with control, whereas no significant differences of pH and lactic or acetic acid content were found. Additionally, the treated silages also exhibited lower copy numbers of Clostridium, Enterobacter and fungi during ensiling process established by qPCR. In conclusion, AS and HN could be used as additives to control the growth of unfavorable microorganism and enhance the silage quality.
Collapse
Affiliation(s)
- Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yin Lu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|