1
|
Xiao P, Pan D, Li F, Liu Y, Huang Y, Zhou X, Zhang Y. Effect of TetR Family Transcriptional Regulator PccD on Phytosterol Metabolism of Mycolicibacterium. Microorganisms 2024; 12:2349. [PMID: 39597737 PMCID: PMC11596240 DOI: 10.3390/microorganisms12112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Androstenedione (AD) is an important intermediate for the production of steroidal drugs. The process of transforming phytosterols into AD by Mycolicibacterium is mainly the degradation process of the phytosterol side chain, and the excessive accumulation of propionyl-CoA produced by Mycobacterium will produce toxic effects, which seriously restricts the transformation performance of strains. In this study, Mycolicibacterium sp. LZ2 (Msp) was used as the research object to study the transcription factor PccD of the TetR family, which has the role of propionyl-CoA metabolism regulation. By constructing overexpression and deletion strains of pccD, it was confirmed that pccD had an inhibitory effect on the transcription of propionyl-CoA carboxylase genes (pccA and pccB). Electrophoretic Mobility Shift Assay (EMSA) and DNase I footprint analysis demonstrated that PccD is directly involved in the transcriptional regulation of pccA and pccB and is a negative transcriptional regulator of the pcc operon. In the study of phytosterol transformation, the growth rate and bacterial viability of Msp-ΔpccD were higher than Msp, but the growth of Msp-pccD was inhibited. As a result of testing of intracellular propionyl-CoA levels and AD production yields, it was found that lower propionyl-CoA levels and higher AD production yields were observed in Msp-ΔpccD. The results expand the cognition of propionyl-CoA metabolism regulation and provide a theoretical basis and reference for the rational transformation of phytosterol transformation strains and secondary metabolite synthesis strains with propionyl-CoA as a substrate, which has important research significance.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiuling Zhou
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (P.X.); (D.P.); (F.L.); (Y.L.); (Y.H.)
| | - Yang Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (P.X.); (D.P.); (F.L.); (Y.L.); (Y.H.)
| |
Collapse
|
2
|
Ke X, Cui JH, Ren QJ, Zheng T, Wang XX, Liu ZQ, Zheng YG. Rerouting phytosterol degradation pathway for directed androst-1,4-diene-3,17-dione microbial bioconversion. Appl Microbiol Biotechnol 2024; 108:186. [PMID: 38300290 PMCID: PMC10834601 DOI: 10.1007/s00253-023-12847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
Steroid-based drugs are now mainly produced by the microbial transformation of phytosterol, and a two-step bioprocess is adopted to reach high space-time yields, but byproducts are frequently observed during the bioprocessing. In this study, the catabolic switch between the C19- and C22-steroidal subpathways was investigated in resting cells of Mycobacterium neoaurum NRRL B-3805, and a dose-dependent transcriptional response toward the induction of phytosterol with increased concentrations was found in the putative node enzymes including ChoM2, KstD1, OpccR, Sal, and Hsd4A. Aldolase Sal presented a dominant role in the C22 steroidal side-chain cleavage, and the byproduct was eliminated after sequential deletion of opccR and sal. Meanwhile, the molar yield of androst-1,4-diene-3,17-dione (ADD) was increased from 59.4 to 71.3%. With the regard of insufficient activity of rate-limiting enzymes may also cause byproduct accumulation, a chromosomal integration platform for target gene overexpression was established supported by a strong promoter L2 combined with site-specific recombination in the engineered cell. Rate-limiting steps of ADD bioconversion were further characterized and overcome. Overexpression of the kstD1 gene further strengthened the bioconversion from AD to ADD. After subsequential optimization of the bioconversion system, the directed biotransformation route was developed and allowed up to 82.0% molar yield with a space-time yield of 4.22 g·L-1·day-1. The catabolic diversion elements and the genetic overexpression tools as confirmed and developed in present study offer new ideas of M. neoaurum cell factory development for directed biotransformation for C19- and C22-steroidal drug intermediates from phytosterol. KEY POINTS: • Resting cells exhibited a catabolic switch between the C19- and C22-steroidal subpathways. • The C22-steroidal byproduct was eliminated after sequential deletion of opccR and sal. • Rate-limiting steps were overcome by promoter engineering and chromosomal integration.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Hao Cui
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi-Jie Ren
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Tong Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Xiong K, Guo H, Xue S, Dai Y, Dong L, Ji C, Zhang S. Cost-effective production of ergothioneine using Rhodotorula mucilaginosa DL-X01 from molasses and fish bone meal enzymatic hydrolysate. BIORESOURCE TECHNOLOGY 2024; 393:130101. [PMID: 38013036 DOI: 10.1016/j.biortech.2023.130101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Ergothioneine (EGT) is a high-value natural antioxidant that cannot be synthesized by the human body. This study showed that Rhodotorula mucilaginosa DL-X01 can use untreated molasses and fish bone meal enzymatic hydrolysate as the substrates to synthesize EGT. By optimizing the growth conditions, the EGT yield reached 29.39 mg/L when molasses and fish bone meal (FBM) were added at 60 g/L and 400 g/L respectively. Finally, the EGT yield was increased to 216.25 mg/L by fed-batch fermentation in a 5 L bioreactor. Compared with the fermentation by yeast extract peptone dextrose medium, the feedstock cost of EGT production was reduced by 330.91 % by using molasses and FBM as substrates. These results showed that R. mucilaginosa DL-X01 can produce high-value EGT using two cheap processing by-products, molasses and FBM, which is of great significance for environmental protection and sustainable development.
Collapse
Affiliation(s)
- Kexin Xiong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Siyu Xue
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiwei Dai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Liang Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Guo Y, Wang H, Wei X, Wang Z, Wang H, Chen J, Li J, Liu J. Utilization of high-K+-cane molasses for enhanced S-Adenosylmethionine production by manipulation of a K+ transport channel in Saccharomyces cerevisiae. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Sustainable production of 2-phenylethanol from agro-industrial wastes by metabolically engineered Bacillus licheniformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Tekucheva DN, Nikolayeva VM, Karpov MV, Timakova TA, Shutov AV, Donova MV. Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: "one-pot", two modes. BIORESOUR BIOPROCESS 2022; 9:116. [PMID: 38647765 PMCID: PMC10992188 DOI: 10.1186/s40643-022-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The main male hormone, testosterone is obtained from cheap and readily available phytosterol using the strains of Mycolicibacterium neoaurum VKM Ac-1815D, or Ac-1816D. During the first "oxidative" stage, phytosterol (5-10 g/L) was aerobically converted by Ac-1815D, or Ac-1816D to form 17-ketoandrostanes: androstenedione, or androstadienedione, respectively. At the same bioreactor, the 17-ketoandrostanes were further transformed to testosterone due to the presence of 17β-hydroxysteroid dehydrogenase activity in the strains ("reductive" mode). The conditions favorable for "oxidative" and "reductive" stages have been revealed to increase the final testosterone yield. Glucose supplement and microaerophilic conditions during the "reductive" mode ensured increased testosterone production by mycolicibacteria cells. Both strains effectively produced testosterone from phytosterol, but highest ever reported testosterone yield was achieved using M. neoaurum VKM Ac-1815D: 4.59 g/l testosterone was reached from 10 g/l phytosterol thus corresponding to the molar yield of over 66%. The results contribute to the knowledge on phytosterol bioconversion by mycolicibacteria, and are of significance for one-pot testosterone bioproduction from phytosterol bypassing the intermediate isolation of the 17-ketoandrostanes.
Collapse
Affiliation(s)
- Daria N Tekucheva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| | - Vera M Nikolayeva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Mikhail V Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Tatiana A Timakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Andrey V Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
8
|
Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum. Appl Environ Microbiol 2022; 88:e0130322. [PMID: 36286498 PMCID: PMC9680642 DOI: 10.1128/aem.01303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C22 steroids are valuable precursors for steroid drug synthesis, but the development of C22 steroids remains unsatisfactory. This study presented a strategy for the one-step bioconversion of phytosterols to a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), by 3-ketosteroid-Δ
1
-dehydrogenase and enoyl-CoA hydratase deficiency with overexpression of 17β-hydroxysteroid dehydrogenase acyl-CoA dehydrogenase in
Mycolicibacterium
.
Collapse
|
9
|
Su Z, Zhang Z, Yu J, Yuan C, Shen Y, Wang J, Su L, Wang M. Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum. Microb Cell Fact 2022; 21:218. [PMID: 36266684 PMCID: PMC9585753 DOI: 10.1186/s12934-022-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background The production of androstenedione (AD) from phytosterols by Mycolicibacterium neoaurum is a multi-step biotransformation process, which requires degradation of sterol side chains, accompanied by the production of propionyl-CoA. However, the transient production of large amounts of propionyl-CoA can accumulate intracellularly to produce toxic effects and severely inhibit AD production. Results In the present study, the intracellular propionyl-CoA concentration was effectively reduced and the productivity of the strain was improved by enhancing the cytosolic methyl-branched lipid synthesis pathway and increasing the expression level of nat operator gene, respectively. Subsequently, the application of a pathway combination strategy, combined and the inducible regulation strategy, further improved AD productivity with a maximum AD conversion rate of 96.88%, an increase of 13.93% over the original strain. Conclusions Overall, we provide a new strategy for reducing propionyl-CoA stress during biotransformation for the production of AD and other steroidal drugs using phytosterols. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01942-x.
Collapse
Affiliation(s)
- Zhenhua Su
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhenjian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jian Yu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Congcong Yuan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Jianxin Wang
- Frontage Laboratories, Inc, Exton, PA, 19341, USA
| | - Liqiu Su
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
10
|
Wang XX, Ke X, Liu ZQ, Zheng YG. Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 2022; 38:191. [PMID: 35974205 PMCID: PMC9381402 DOI: 10.1007/s11274-022-03369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
11
|
Guo Y, Li F, Zhao J, Wei X, Wang Z, Liu J. Diverting mevalonate pathway metabolic flux leakage in Saccharomyces cerevisiae for monoterpene geraniol production from cane molasses. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Zhang Y, Zhou X, Yao Y, Xu Q, Shi H, Wang K, Feng W, Shen Y. Coexpression of VHb and MceG genes in Mycobacterium sp. Strain LZ2 enhances androstenone production via immobilized repeated batch fermentation. BIORESOURCE TECHNOLOGY 2021; 342:125965. [PMID: 34563820 DOI: 10.1016/j.biortech.2021.125965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Androstenone production is limited by low-efficiency substrate transport and dissolved oxygen levels during fermentation. In this study, the coexpression of the optimized Vitreoscilla hemoglobin (VHb) and sterol transporter ATPase (MceG) genes in Mycobacterium sp. LZ2 (Msp) was investigated to alleviate dissolved oxygen and mass transfer limitations. Results revealed that Msp-vgb/mceG effectively improved the growth, production, and adaptation to dissolved oxygen compared with those of Msp. The increased catalase activity and reduced intracellular ROS levels enhanced cell viability and promoted transcription of genes critical for phytosterol metabolism. Bagasse as an immobilization carrier increased the productivity of Msp-vgb/mceG by 56%. Immobilized repeat batch fermentation reduced the biotransformation period from 60 days to 37 days and improved the productivity from 0.039 g/L/h to 0.069 g/L/h. To the best of our knowledge, this work is the first study on the immobilization of recombinant mycobacteria on bagasse for androstenone production.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yingying Yao
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Qianqian Xu
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Haiying Shi
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Kuiming Wang
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Wei Feng
- School of Life Science, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
13
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
14
|
Chang H, Zhang H, Zhu L, Zhang W, You S, Qi W, Qian J, Su R, He Z. A combined strategy of metabolic pathway regulation and two-step bioprocess for improved 4-androstene-3,17-dione production with an engineered Mycobacterium neoaurum. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Biosynthesis and Industrial Production of Androsteroids. PLANTS 2020; 9:plants9091144. [PMID: 32899410 PMCID: PMC7570361 DOI: 10.3390/plants9091144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Steroids are a group of organic compounds that include sex hormones, adrenal cortical hormones, sterols, and phytosterols. In mammals, steroid biosynthesis starts from cholesterol via multiple steps to the final steroid and occurs in the gonads, adrenal glands, and placenta. This highly regulated pathway involves several cytochrome P450, as well as different dehydrogenases and reductases. Steroids in mammals have also been associated with drug production. Steroid pharmaceuticals such as testosterone and progesterone represent the second largest category of marketed medical products. There heterologous production through microbial transformation of phytosterols has gained interest in the last couple of decades. Phytosterols being the plants sterols serve as inexpensive substrates for the production of steroid derivatives. Various genes and biochemical pathways involved in phytosterol degradation have been identified in many Rhodococcus and Mycobacterium species. Apart from an early investigation in mammals, presence of steroids such as androsteroids and progesterone has also been demonstrated in plants. Their main role is linked with growth, development, and reproduction. Even though plants share some chemical features with mammals, the biosynthesis is different, with the first C22 hydroxylation as an example. This is performed by CYP11A1 in mammals and CYP90B1 in plants. Moreover, the entire plant steroid biosynthesis is not fully elucidated. Knowing this pathway could provide new processes for the industrial biotechnological production of steroid hormones in plants.
Collapse
|
16
|
Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. BIORESOURCE TECHNOLOGY 2020; 309:123307. [PMID: 32315913 DOI: 10.1016/j.biortech.2020.123307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The biotransformation of phytosterol to androstenedione (AD) by mycobacteria is a unique process accompanied by energy-producing. However, high intracellular ATP content can severely inhibit the efficient production of AD. In this study, a novel citrate-based ATP futile cycle (AFC) and pyruvate-based AFC were constructed for the first time. Application of AFCs reduced intracellular ATP and propionyl-CoA levels and increased NAD+/NADH ratios and cell viability. The forced consumption of ATP promotes the transcription of critical genes in propionyl-CoA metabolism. The synergistic effect of enhanced propionyl-CoA metabolism and AFC increased AD conversion yield from 60.6% to 97.3%. The AD productivity was further improved by repeated batch fermentation using untreated cane molasses. The maximum productivity was 181% higher than that of the original strain. Therefore, the strategy of combining AFC and repeated batch fermentation is a valuable tool for the efficient and low-cost production of AD and other steroidal pharmaceutical precursors.
Collapse
Affiliation(s)
- Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zehui Zan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Appl Environ Microbiol 2020; 86:AEM.00441-20. [PMID: 32414803 DOI: 10.1128/aem.00441-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023] Open
Abstract
Androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD) are valuable steroid pharmaceutical intermediates obtained by soybean phytosterol biotransformation by Mycobacterium Cyclodextrins (CDs) are generally believed to be carriers for phytosterol delivery and can improve the production of AD and ADD due to their effects on steroid solubilization and alteration in cell wall permeability for steroids. To better understand the mechanisms of CD promotion, we performed proteomic quantification of the effects of hydroxypropyl-β-CD (HP-β-CD) on phytosterol metabolism in Mycobacterium neoaurum TCCC 11978 C2. Perturbations are observed in steroid catabolism and glucose metabolism by adding HP-β-CD in a phytosterol bioconversion system. AD and ADD, as metabolic products of phytosterol, are toxic to cells, with inhibited cell growth and biocatalytic activity. Treatment of mycobacteria with HP-β-CD relieves the inhibitory effect of AD(D) on the electron transfer chain and cell growth. These results demonstrate the positive relationship between HP-β-CD and phytosterol metabolism and give insight into the complex functions of CDs as mediators of the regulation of sterol metabolism.IMPORTANCE Phytosterols from soybean are low-cost by-products of soybean oil production and, owing to their good bioavailability in mycobacteria, are preferred as the substrates for steroid drug production via biotransformation by Mycobacterium However, the low level of production of steroid hormone drugs due to the low aqueous solubility (below 0.1 mmol/liter) of phytosterols limits the commercial use of sterol-transformed strains. To improve the bioconversion of steroids, cyclodextrins (CDs) are generally used as an effective carrier for the delivery of hydrophobic steroids to the bacterium. CDs improve the biotransformation of steroids due to their effects on steroid solubilization and alterations in cell wall permeability for steroids. However, studies have rarely reported the effects of CDs on cell metabolic pathways related to sterols. In this study, the effects of hydroxypropyl-β-CD (HP-β-CD) on the expression of enzymes related to steroid catabolic pathways in Mycobacterium neoaurum were systematically investigated. These findings will improve our understanding of the complex functions of CDs in the regulation of sterol metabolism and guide the application of CDs to sterol production.
Collapse
|
18
|
Guo X, Fu H, Feng J, Hu J, Wang J. Direct conversion of untreated cane molasses into butyric acid by engineered Clostridium tyrobutyricum. BIORESOURCE TECHNOLOGY 2020; 301:122764. [PMID: 31958691 DOI: 10.1016/j.biortech.2020.122764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The sucrose metabolic genes (scrA, scrB and scrK) from C. acetobutylicum ATCC 824 were successfully overexpressed in C. tyrobutyricum ATCC 25755, endowing it with the ability to co-utilize sucrose, fructose and glucose in the cane molasses. As a result, the engineering strain C. tyrobutyricum ATCC 25755/scrBAK produced 18.07 g/L and 18.98 g/L butyric acid when sucrose and cane molasses were used as the carbon source, respectively. Furthermore, the medium composition and initial cane molasses concentration were optimized to make full use of the untreated cane molasses. Based on these results, 45.71 g/L butyric acid with a yield of 0.39 g/g was obtained in fed-batch fermentation, and the feedstock cost of using untreated cane molasses was decreased by ~47% when compared with the conventional glucose fermentation. This study demonstrated the potential application of C. tyrobutyricum ATCC 25755/scrBAK for economic butyric acid production from untreated cane molasses.
Collapse
Affiliation(s)
- Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jialei Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
19
|
Zhang Y, Zhou X, Wang X, Wang L, Xia M, Luo J, Shen Y, Wang M. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Microb Cell Fact 2020; 19:13. [PMID: 31992309 PMCID: PMC6986058 DOI: 10.1186/s12934-020-1285-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Androstenedione (AD) is an important steroid medicine intermediate that is obtained via the degradation of phytosterols by mycobacteria. The production process of AD is mainly the degradation of the phytosterol aliphatic side chain, which is accompanied by the production of propionyl CoA. Excessive accumulation of intracellular propionyl-CoA produces a toxic effect in mycobacteria, which restricts the improvement of production efficiency. The 2-methylcitrate cycle pathway (MCC) plays a significant role in the detoxification of propionyl-CoA in bacterial. The effect of the MCC on phytosterol biotransformation in mycobacteria has not been elucidated in detail. Meanwhile, reducing fermentation cost has always been an important issue to be solved in the optimizing of the bioprocess. RESULTS There is a complete MCC in Mycobacterium neoaurum (MNR), prpC, prpD and prpB in the prp operon encode methylcitrate synthase, methylcitrate dehydratase and methylisocitrate lyase involved in MCC, and PrpR is a specific transcriptional activator of prp operon. After the overexpression of prpDCB and prpR in MNR, the significantly improved transcription levels of prpC, prpD and prpB were observed. The highest conversion ratios of AD obtained by MNR-prpDBC and MNR-prpR increased from 72.3 ± 2.5% to 82.2 ± 2.2% and 90.6 ± 2.6%, respectively. Through enhanced the PrpR of MNR, the in intracellular propionyl-CoA levels decreased by 43 ± 3%, and the cell viability improved by 22 ± 1% compared to MNR at 96 h. The nitrogen transcription regulator GlnR repressed prp operon transcription in a nitrogen-limited medium. The glnR deletion enhanced the transcription level of prpDBC and the biotransformation ability of MNR. MNR-prpR/ΔglnR was constructed by the overexpression of prpR in the glnR-deleted strain showed adaptability to low nitrogen. The highest AD conversion ratio by MNR-prpR/ΔglnR was 92.8 ± 2.7% at low nitrogen level, which was 1.4 times higher than that of MNR. CONCLUSION Improvement in phytosterol biotransformation after the enhancement of propionyl-CoA metabolism through the combined modifications of the prp operon and glnR of mycobacteria was investigated for the first time. The overexpress of prpR in MNR can increase the transcription of essential genes (prpC, prpD and prpB) of MCC, reduce the intracellular propionyl-CoA level and improve bacterial viability. The knockout of glnR can enhance the adaptability of MNR to the nitrogen source. In the MNRΔglnR strain, overexpress of prpR can achieve efficient production of AD at low nitrogen levels, thus reducing the production cost. This strategy provides a reference for the economic and effective production of other valuable steroid metabolites from phytosterol in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China. .,College of Life Science, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xuemei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|