1
|
Yan Y, Zhang Y, Wan J, Gao J, Liu F. Optimization of protein recovery from sewage sludge via controlled and energy-saving ultrasonic-alkali hydrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162004. [PMID: 36739027 DOI: 10.1016/j.scitotenv.2023.162004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The abundant protein in excess sludge can be recovered to prepare high value-added products. However, this sustainable treatment method still has large challenges, such as high energy consumption. In this work, the classical batch operation (BO) and semi-batch operation (SBO) modes were adopted and compared for ultrasonic-alkali hydrolysis. The results showed that the reaction time of SBO significantly decreased to half of that of BO with the same efficiency (ca. 70 %), indicating that SBO was much more energy-efficient. Moreover, analysis of the nitrogen solubility index and trichloroacetic acid-soluble nitrogen index demonstrated that the further proteolysis of protein under SBO was limited. Furthermore, the first-order reaction model fitted the hydrolysis data well (R2 ≥ 0.91) for both modes, in which the rate constant of SBO (k = 0.44 min-1) was 2.3 times that of BO. Finally, the properties of both products met the standards of foaming extinguishers.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yajing Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Evaluation of Enzymatic Hydrolysis of Sugarcane Bagasse Using Combination of Enzymes or Co-Substrate to Boost Lytic Polysaccharide Monooxygenases Action. Catalysts 2022. [DOI: 10.3390/catal12101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study evaluated innovative approaches for the enzymatic hydrolysis of lignocellulosic biomass. More specifically, assays were performed to evaluate the supplementation of the commercial cellulolytic cocktail Cellic® CTec2 (CC2) with LPMO (GcLPMO9B), H2O2, or cello-oligosaccharide dehydrogenase (CelDH) FgCelDH7C in order to boost the LPMO action and improve the saccharification efficiency of biomass into monosaccharides. The enzymatic hydrolysis was carried out using sugarcane bagasse pretreated by hydrodynamic cavitation-assisted oxidative process, 10% (w/w) solid loading, and 30 FPU CC2/g dry biomass. The results were compared in terms of sugars release and revealed an important influence of the supplementations at the initial 6 h of hydrolysis. While the addition of CelDH led to a steady increase in glucose production to reach 101.1 mg of glucose/g DM, accounting for the highest value achieved after 72 h of hydrolysis, boosting the LPMOs activity by the supplementation of pure LPMOs or the LPMO co-substrate H2O2 were also effective to improve the cellulose conversion, increasing the initial reaction rate of the hydrolysis. These results revealed that LPMOs play an important role on enzymatic hydrolysis of cellulose and boosting their action can help to improve the reaction rate and increase the hydrolysis yield. LPMOs-CelDH oxidative pairs represent a novel potent combination for use in the enzymatic hydrolysis of lignocellulose biomass. Finally, the strategies presented in this study are promising approaches for application in lignocellulosic biorefineries, especially using sugarcane bagasse as a feedstock.
Collapse
|
3
|
Agarwal NK, Kumar M, Ghosh P, Kumar SS, Singh L, Vijay VK, Kumar V. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. CHEMOSPHERE 2022; 295:133893. [PMID: 35134407 DOI: 10.1016/j.chemosphere.2022.133893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane bagasse is an abundantly available agricultural waste having high potential that is still underutilized and mostly burnt as fuel. There are various processes available for bagasse utilization in improved ways and one such process is anaerobic digestion (AD) of bagasse for biogas production. The complex structure of biomass is recalcitrant to degradation and is a major hindrance for the anaerobic digestion, so different pretreatment methods are applied to deconstruct the bagasse for microbial digestion. In this review, different processes developed for the pretreatment of bagasse and their effect on biogas production have been extensively covered. Moreover, combination of pretreatment methods, co-digestion of bagasse with other waste (nitrogen rich or easily digestible) for enhanced biogas production and biomethane generation along with other value-added products has also been reviewed. The digestate contains a significant amount of organics with partial recovery of energy and products and is generated in huge amount that further creates disposal problem. Therefore, integration of digestate valorization with AD through gasification, pyrolysis, hydrothermal carbonization and use of microalgae for maximum recovery of energy and value-added products have also been evaluated. Thus, this review highlights major emerging area of research for improvement in bagasse based processes for enhanced biogas production along with digestate valorization to make the overall process economical and sustainable.
Collapse
Affiliation(s)
- Nitin Kumar Agarwal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Madan Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Smita S Kumar
- Department of Environmental Sciences, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
4
|
Prado CA, Antunes FAF, Rocha TM, Sánchez-Muñoz S, Barbosa FG, Terán-Hilares R, Cruz-Santos MM, Arruda GL, da Silva SS, Santos JC. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. BIORESOURCE TECHNOLOGY 2022; 345:126458. [PMID: 34863850 DOI: 10.1016/j.biortech.2021.126458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Environmental problems due to utilization of fossil-derived materials for energy and chemical generation has prompted the use of renewable alternative sources, such as lignocellulose biomass (LB). Indeed, the production of biomolecules and biofuels from LB is among the most important current research topics aiming to development a sustainable bioeconomy. Yet, the industrial use of LB is limited by the recalcitrance of biomass, which impairs the hydrolysis of the carbohydrate fractions. Hydrodynamic cavitation (HC) and Advanced Oxidative Processes (AOPs) has been proposed as innovative pretreatment strategies aiming to reduce process time and chemical inputs. Therefore, the underlying mechanisms, procedural strategies, influence on biomass structure, and research gaps were critically discussed in this review. The performed discussion can contribute to future developments, giving a wide overview of the main involved aspects.
Collapse
Affiliation(s)
- C A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - F A F Antunes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - T M Rocha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - S Sánchez-Muñoz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - F G Barbosa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - R Terán-Hilares
- Laboratorio de Materiales, Universidad Católica de Santa María - UCSM, Urb. San José, San Jose S/n, Yanahuara, Arequipa, Perú
| | - M M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - G L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - S S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - J C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil.
| |
Collapse
|
5
|
Bimestre TA, Júnior JAM, Canettieri EV, Tuna CE. Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. BIORESOUR BIOPROCESS 2022; 9:7. [PMID: 38647820 PMCID: PMC10991952 DOI: 10.1186/s40643-022-00499-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
The hydrodynamic cavitation comes out as a promising route to lignocellulosic biomass pretreatment releasing huge amounts of energy and inducing physical and chemical transformations, which favor lignin-carbohydrate matrix disruption. The hydrodynamic cavitation process combined with other pretreatment processes has shown an attractive alternative with high pretreatment efficiency, low energy consumption, and easy setup for large-scale applications compared to conventional pretreatment methods. This present review includes an overview of this promising technology and a detailed discussion on the process of parameters that affect the phenomena and future perspectives of development of this area.
Collapse
Affiliation(s)
- Thiago Averaldo Bimestre
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil.
| | - José Antonio Mantovani Júnior
- Center for Weather Forecasting and Climate Studies, National Institute for Space Research CPTEC/INPE, Cachoeira Paulista, SP, 12630-000, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil
| | - Celso Eduardo Tuna
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil
| |
Collapse
|
6
|
Cellulose Recovery from Agri-Food Residues by Effective Cavitational Treatments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Residual biomass from agri-food production chain and forestry are available in huge amounts for further valorisation processes. Delignification is usually the crucial step in the production of biofuels by fermentation as well as in the conversion of cellulose into high added-value compounds. High-intensity ultrasound (US) and hydrodynamic cavitation (HC) have been widely exploited as effective pretreatment techniques for biomass conversion and in particular for cellulose recovery. Due to their peculiar mechanisms, cavitational treatments promote an effective lignocellulosic matrix dismantling with delignification at low temperature (35–50 °C). Cavitation also promotes cellulose decrystallization due to a partial depolymerization. The aim of this review is to highlight recent advances in US and HC-assisted delignification and further cellulose recovery and valorisation.
Collapse
|
7
|
Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain. ENERGIES 2021. [DOI: 10.3390/en14041150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we evaluate the usefulness of mature landfill leachate (MLL) as a carrier allowing hydrodynamic cavitation (HD) of brewery spent grain (BSG). The HD experiments were conducted using an orifice plate with a conical concentric hole of 3/10 mm (inlet/outlet diameter) as a constriction in the cavitation device. The initial pressure was 7 bar and the number of recirculation passes through the cavitation zone reached 30. The results showed that complex organic matter was degraded and solubilized when cavitating the MLL and BSG mixture. The biochemical oxygen demand (BOD5) increased by 45% and the BOD5/total chemical oxygen demand (COD) ratio increased by 69%, whereas the COD, total solids, and nutrient concentration dropped noticeably. However, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) revealed the generation of possibly toxic HD byproducts such as aromatic compounds. This seems to indicate that MLL could not be regarded as a suitable carrier for BSG cavitation.
Collapse
|
8
|
Hernández-Guzmán A, Navarro-Gutiérrez IM, Meléndez-Hernández PA, Hernández-Beltrán JU, Hernández-Escoto H. Enhancement of alkaline-oxidative delignification of wheat straw by semi-batch operation in a stirred tank reactor. BIORESOURCE TECHNOLOGY 2020; 312:123589. [PMID: 32498011 DOI: 10.1016/j.biortech.2020.123589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 05/26/2023]
Abstract
This paper compares a semi-batch operation and a conventional one of an alkaline oxidative pretreatment of wheat straw carried out in a stirred tank reactor. For the pretreatment, different concentrations of biomass (6% up to 12% w/v) and two different particle sizes (mesh #40-60 and #>60) were experimented. The performance of processes was evaluated through the analysis of lignocellulosic composition of the biomass, and the enzymatic hydrolysis of pretreated biomass using the Cellic® CTec2 enzyme complex by Novozymes®. The process time of semi-batch operation is significantly lower than the batch one and enables a higher load of biomass, showing a delignification yield between 55 and 60%. In the first 5 h of reaction time, the enzymatic hydrolysis experiments reached their maximum yields of 72 and 66% according to reducing sugars conversion when using the mesh #>60 mesh and #40-60, respectively.
Collapse
Affiliation(s)
- Alicia Hernández-Guzmán
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Ivette Michelle Navarro-Gutiérrez
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Perla Araceli Meléndez-Hernández
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Javier Ulises Hernández-Beltrán
- Universidad Autónoma de Coahuila, Facultad de Ciencias Biológicas, Laboratorio de Biorremediación, Carretera Torreón-Matamóros Km. 7.5, Torreón, Coahuila 27000, Mexico
| | - Héctor Hernández-Escoto
- Universidad de Guanajuato, Departamento de Ingeniería Química, Laboratorio de Análisis de Bio-Procesos Industriales, Noria Alta s/n, Guanajuato 36050, Mexico.
| |
Collapse
|
9
|
Terán Hilares R, Dionízio RM, Sánchez Muñoz S, Prado CA, de Sousa Júnior R, da Silva SS, Santos JC. Hydrodynamic cavitation-assisted continuous pre-treatment of sugarcane bagasse for ethanol production: Effects of geometric parameters of the cavitation device. ULTRASONICS SONOCHEMISTRY 2020; 63:104931. [PMID: 31945566 DOI: 10.1016/j.ultsonch.2019.104931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
For biotechnological conversion of lignocellulosic biomass, a pre-treatment step is required before enzymatic hydrolysis of carbohydrate fractions of the material, which is required to produce fermentable sugars for generation of ethanol or other products in a biorefinery. The most of the reported pre-treatment technologies are in batch operation mode, presenting some disadvantages as dead times in the process. In this context, hydrodynamic cavitation (HC)-assisted alkaline hydrogen peroxide (AHP) pre-treatment in continuous process was proposed for pre-treatment of sugarcane bagasse (SCB). The system was designed with a main reactor containing two devices to generate cavitation by passing liquid medium through orifice plates. For SCB pretreated in continuous process, 52.79, 34.31, 22.13 and 15.81 g of total reducing sugars (TRS) per 100 g of SCB were released in samples pretreated using orifice plates with a number of holes of 24 (d = 0.45 mm), 16 (d = 0.65 mm), 12 (d = 0.8 mm) and 8 (d = 1 mm), respectively. Computational Fluid Dynamics (CFD) tools showed that 0.94 of vapor phase volume fraction and 0.19 of cavitation number were achieved at 31 m/s of throat velocity and upstream pressure of 350,000 Pa. By using pretreated SCB, 28.44 g of ethanol/L (84.31% of yield respect to theoretical value) was produced by immobilized Scheffersomyces stipitis NRRL-Y7124 in a simultaneous hydrolysis and fermentation process at high solid loading (16% S/L). Thus, HC-assisted process was proved as a promising technology for valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP: 12602-810 Lorena, SP, Brazil; Laboratório de Materiales, Universidad Católica de Santa Maria - UCSM, Urb. San José, San Jose s/n, Yanahuara, Arequipa, Perú.
| | - Rafaela Medeiros Dionízio
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP: 12602-810 Lorena, SP, Brazil
| | - Salvador Sánchez Muñoz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP: 12602-810 Lorena, SP, Brazil
| | - Carina Aline Prado
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP: 12602-810 Lorena, SP, Brazil
| | - Ruy de Sousa Júnior
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rod. Washington Luís-km 235, CEP: 13565-905 São Carlos, SP, Brazil
| | - Silvio Silvério da Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP: 12602-810 Lorena, SP, Brazil
| | - Júlio César Santos
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP: 12602-810 Lorena, SP, Brazil.
| |
Collapse
|