1
|
Cheng Y, Lu C, Gao S, Koju R, Li H, Zhu Z, Hu C, Qu J. Synchronous in-situ sludge reduction and enhanced denitrification through improving electron transfer during endogenous metabolisms with Fe(Ⅱ) addition. WATER RESEARCH 2024; 255:121472. [PMID: 38552492 DOI: 10.1016/j.watres.2024.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, Guangxi 541004, China
| | - Rashmi Koju
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Zongqiang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, Guangxi 541004, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Chen X, Gong Y, Li Z, Guo Y, Zhang H, Hu B, Yang W, Cao Y, Mu R. Key function of Kouleothrix in stable formation of filamentous aerobic granular sludge at low superficial gas velocity with polymeric substrates. BIORESOURCE TECHNOLOGY 2024; 397:130466. [PMID: 38373501 DOI: 10.1016/j.biortech.2024.130466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Forming and maintaining stable aerobic granular sludge (AGS) at a low superficial gas velocity (SGV) is challenging, particularly with polymeric substrates. This study cultivated filamentous aerobic granular sludge (FAGS) with filamentous Kouleothrix (Type 1851) at low SGV (0.15 cm/s) utilizing mixed acetate-soluble starch. Within approximately 260 days, notable increases in the relative abundance of Kouleothrix (from 4 % to 10 %) and Ca. Competibacter (from 1 % to 26 %) were observed through 16S rRNA gene analysis. Metagenomic analysis revealed increased expression of functional genes involved in volatile fatty acid (VFA) production (e.g., ackA and pta) and polyhydroxyalkanoate synthesis (e.g., phbB and phbC). Kouleothrix acted as a skeleton for bacterial attachment and was the key fermenting bacteria promoting granulation and maintaining granule stability. This study provides insight into the formation of FAGS with low-energy and non-VFA substrates.
Collapse
Affiliation(s)
- Xi Chen
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Yanzhe Gong
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yingming Guo
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongjiang Zhang
- North China Electric Power Research Institute Co., Ltd, Beijing 100045, China
| | - Bin Hu
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Wenhao Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yinhuan Cao
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ruihua Mu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
3
|
Wang C, Chai X, Lu B, Lu W, Han H, Mu Y, Gu Q, Wu B. Integrated control strategy for dual sludge ages in the high-concentration powder carrier bio-fluidized bed (HPB) technology: Enhancing municipal wastewater treatment efficiency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119890. [PMID: 38160542 DOI: 10.1016/j.jenvman.2023.119890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The high-concentration powder carrier bio-fluidized bed (HPB) technology is an emerging approach that enables on-site upgrading of wastewater treatment plants (WWTPs). HPB technology promotes the formation of biofilm sludge with micron-scale composite powder carriers as the core and suspended sludge mainly composed of flocs surrounding the biofilm sludge. This study proposed a novel integrated strategy for assessing and controlling the sludge ages in suspended/bio-film activated sludge supported by micron-scale composite powder carrier. Utilizing the cyclone unit and the corresponding theoretical model, the proposed strategy effectively addresses the sludge ages contradiction between denitrifying bacteria and polyphosphate-accumulating organisms (PAOs), thereby enhancing the efficiency of municipal wastewater treatment. The sludge age of the suspended (25 d) and bio-film (99 d) sludge, calculated using the model, contribute to the simultaneous removal of nitrogen and phosphorus. Meanwhile, the model further estimates distinct contributions of suspended and bio-film sludge to chemical oxygen demand (COD) and total nitrogen (TN), which are 55% and 42% for COD, 20% and 57% for TN of suspended sludge and bio-film sludge, respectively. This suggests that the contribution of suspended sludge and bio-film sludge to COD and TN removal efficiency can be determined and controlled by the operational conditions of the cyclone unit. Additionally, the simulation values for COD, ammonia nitrogen (NH4+-N), TN and total phosphorus (TP) closely align with the actual values of WWTPs over 70 days (p < 0.001) with the correlation coefficients (R2) of 0.9809, 0.9932, 0.9825, and 0.837, respectively. These results support the theoretical foundation of HPB technology for simultaneous nitrogen and phosphorus removal in sewage treatment plants. Therefore, this model serves as a valuable tool to guide the operation, design, and carrier addition in HPB technology implementation.
Collapse
Affiliation(s)
- Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Yue Mu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Qun Gu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, 410205, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Alves OIM, Araújo JM, Silva PMJ, Magnus BS, Gavazza S, Florencio L, Kato MT. Formation and stability of aerobic granular sludge in a sequential batch reactor for the simultaneous removal of organic matter and nutrients from low-strength domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156988. [PMID: 35772566 DOI: 10.1016/j.scitotenv.2022.156988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (CODt) of ≈ 200 mg.L-1. The applied organic loading rate was 0.9 ± 0.3 kg CODt.m-3.d-1 in the experiment. Aerobic granular sludge developed gradually. After 87-day operation, granules (diameter ≥ 0.2 mm) were ≥ 50 % of the biomass, and after 168 days, complete granulation was obtained (≥ 80 % of biomass). In the third period (days 168-247, complete granulation), mixed liquor biomass reached a volatile suspended solids (VSS) concentration of 1.2 ± 0.3 g VSS.L-1, with the granules remaining stable until the experimental end. In this period, low effluent concentrations of COD, nitrogen (NH4+-N, NO2--N and NO3--N) and phosphate (PO43-P) were obtained (mg.L-1): 36 ± 11; 4 ± 5; 3 ± 3, 4 ± 5; and 0.9 ± 0.4, respectively. COD, NH4+-N, and PO43--P removal efficiencies (%) were 80 ± 11; 83 ± 20; and 55 ± 24, respectively. Heterotrophic nitrification and SND were observed, resulting in a process efficiency of 31 % even with dissolved oxygen applied to saturation. The phosphate removal was mainly attributed to denitrifying phosphorus accumulating organisms. Pseudomonas, the dominant genus found, acted in nitrogen and phosphorus removal. Pseudoxanthomonas also assisted in phosphorus removal. Bacterial communities in the flocs (≈ 20 % of biomass) during the last period were similar to those in the granules; therefore, they constituted the basis for granule formation, directly contributed to the simultaneous good removal of organic matter and nutrients.
Collapse
Affiliation(s)
- Oucilane I M Alves
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Julliana M Araújo
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Federal Institute of Education, Science and Technology of Sertão Pernambucano, Campus Ouricuri, Estrada do Tamboril s/n, Zona Rural, Ouricuri, Pernambuco, Brazil
| | - Poliana M J Silva
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna S Magnus
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Sávia Gavazza
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Mario T Kato
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
5
|
Morello R, Di Capua F, Esposito G, Pirozzi F, Fratino U, Spasiano D. Sludge minimization in mainstream wastewater treatment: Mechanisms, strategies, technologies, and current development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115756. [PMID: 35982561 DOI: 10.1016/j.jenvman.2022.115756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Excess sludge production in wastewater treatment plants has become an enormous environmental issue worldwide mainly due to the increased efforts towards wastewater purification. Researchers and plant operators are looking for technological solutions to reduce sludge production through the upgrading of existing technologies and configurations or by substituting them with alternative solutions. Several strategies have been identified to reduce sludge production, including the use of biological and physical-chemical methods (or a combination of them) and novel technologies, although many have not been sufficiently tested at full-scale. To select the most suitable system for sludge reduction, understanding the reduction mechanisms, advantages, disadvantages, and the economic and environmental impact of each technology is essential. This work offers a comprehensive and critical overview of mainstream sludge reduction technologies and underlying mechanisms from laboratory to full scale, and describes potential application, configuration, and integration with conventional systems. Research needs are highlighted, and a techno-economic-environmental comparison of the existing technologies is also proposed.
Collapse
Affiliation(s)
- Raffaele Morello
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy; Department of Agricultural and Environmental Sciences (Di.S.A.A.T), University of Bari, Via Amendola165/A, 70126 Bari, Italy
| | - Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Umberto Fratino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Danilo Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
6
|
Yu C, Wang K, Tian C, Yuan Q. Aerobic granular sludge treating low-strength municipal wastewater: Efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148297. [PMID: 34153768 DOI: 10.1016/j.scitotenv.2021.148297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Low organic load while high fraction of particulates still challenging the application of aerobic granular sludge process in low-strength municipal wastewater treatment. The feasibility of adopting short cycle length to increase organic load and hydrolysis-acidification pretreatment to enhance anaerobic COD uptake was evaluated. As the cycle length decreased from 4 h to 2 h, the organic loading rate increased from 0.98 to 1.3 g L-1 d-1 and granulation appeared after two weeks. Moreover, with the hydrolysis-acidification pretreatment, the average effluent TN and TP concentrations decreased respectively from 17.8 to 13.7 mg L-1 and 0.76 to 0.41 mg L-1, meeting the Grade IA of the effluent standards in China. Furthermore, cycle tests were conducted to reveal the underlying mechanism of the pretreatment effects. The results showed that the hydrolysis-acidification pretreatment enhanced the COD storage and phosphorus release in anaerobic phase, and improved the simultaneous nitrification-denitrification process, as well as the phosphorus uptake in aeration phase.
Collapse
Affiliation(s)
- Cheng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Chen Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
7
|
Hang Z, Li Z, Zhu Y, Zhang J, Yang F, Zhang T. A new approach to evaluate and improve the stability of aerobic sludge systems based on maintenance coefficient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113192. [PMID: 34252857 DOI: 10.1016/j.jenvman.2021.113192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Stability is a key issue of wastewater treatment plants using either aerobic granular (AGS) or conventional activated sludge (CAS). The two forms of aerobic sludge were cultivated under different conditions to study the main factors affecting their stability. It was found that maintenance coefficient (m) describing the fraction of non-growth energy of granules increased significantly when the system became more stable during processes with the enhancement of granulation and the periodic short-term shock load. The yield coefficient (YH) was the main factor affecting the m value, and the inhibition in YH value was able to promote the maintenance potential according to the kinetic equation. Therefore, strategies that promote the maintenance coefficient could be applied to improve the stability of sludge systems, including inhibiting the yield rate and taking periodic short-term shock. Evaluation of stability based on the maintenance coefficient is a promising tool for ensuring the stable operation of wastewater treatment processes.
Collapse
Affiliation(s)
- Zhenyu Hang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yuanmo Zhu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jing Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fan Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tianyu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717-2400, USA
| |
Collapse
|
8
|
Zheng K, Li H, Wang S, Wang Y, Li A, Feng X, Li J. Enhanced proteins and amino acids production based on ammonia nitrogen assimilation and sludge increment by the integration of bioadsorption with anaerobic-anoxic-oxic (AAO) process. CHEMOSPHERE 2021; 280:130721. [PMID: 33962293 DOI: 10.1016/j.chemosphere.2021.130721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Poor effect of contaminants removal efficiency and low organic matter content of activated sludge are common in wastewater treatment plants (WWTPs) in China due to the low-strength wastewater. An anaerobic-anoxic-oxic (AAO) and an adsorption/AAO (A/AAO) combined system were established simultaneously to conduct a comparative study for realizing the conversion of carbon source in influent and the enrichment and recovery of proteins and amino acids through the assimilation of ammonia nitrogen. The experimental results showed that 63.5% of the organic matter in influent was adsorbed and flocculated in adsorption process, and the removal rates of chemical oxygen demand, total nitrogen and total phosphorus in A/AAO process were 88.7%, 77.1%, and 93.0% respectively, which were remarkably better than those in AAO process owing to the addition of improved carbon source. Ammonia assimilation rate of A/AAO process was 26.7% higher than that of AAO process, which implied that the ammonia used to synthesize sludge protein was prominently increased. Furthermore, intracellular proteins and amino acids in A/AAO process were 20% higher than those of AAO process, and the quality was equivalent with fish meal or soybean meal as feed. In addition, the microbial community analysis based on 16S rDNA was conducted. Dechloromonas, Zoogloea, Nitrospira, and Flavobacterium were the main genera, and played important roles in nutrient removal and ammonia nitrogen assimilation. The integration of adsorption process was significant to low-strength wastewater treatment and the improvement of excess sludge quality, which is a prospective inspiration for the resource recovery-based wastewater treatment process.
Collapse
Affiliation(s)
- Kaikai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huaibo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Yan Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Aimin Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuan Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
9
|
Gryndler M, Gryndlerová H, Hujslová M, Bystrianský L, Malinská H, Šimsa D, Hršelová H. In vitro Evaluation of Biofilm Biomass Dynamics. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ouyang J, Li C, Wei L, Wei D, Zhao M, Zhao Z, Zhang J, Chang CC. Activated sludge and other aerobic suspended culture processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1717-1725. [PMID: 32762078 DOI: 10.1002/wer.1427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper provides an overview of activated sludge related to suspended growth processes for the year 2019. The review encompasses process modeling of activated sludge, microbiology of activated sludge, process kinetics and mechanism, nitrogen and phosphorus control, design, and operation in the activated sludge field. The fate and effect of xenobiotics in activated sludge, including trace organic contaminant and heavy metal xenobiotics, which had influence on the growth of suspended sludge, are covered in this review. Compared to past reviews, many topics show increase in activity in 2019. These include, biokinetics process of aerobic granular sludge formation, pyrolysis kinetic mechanism of granular sludge. These topics are referred to formation and disintegration of granular sludge. Other sections include activated sludge settling model, toxicity resistant microbial community, nitritation-anammox processes for nitrogen removal, and respirometry used in the operation of real wastewater treatment plant are especially highlighted in this review. PRACTITIONER POINTS: Biokinetics process of aerobic granular sludge formation Toxicity resistant microbial community in activated sludge Nitritation-anammox processes for nitrogen removal in activated sludge.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhen Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
11
|
Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems. Bioprocess Biosyst Eng 2020; 44:259-270. [PMID: 32889571 DOI: 10.1007/s00449-020-02439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023]
Abstract
The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.
Collapse
|
12
|
Qin R, Su C, Liu W, Tang L, Li X, Deng X, Wang A, Chen Z. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge. BIORESOURCE TECHNOLOGY 2020; 302:122827. [PMID: 32006924 DOI: 10.1016/j.biortech.2020.122827] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The effects of polyether sulfone (PES) microplastic concentration on the nitrifying process of aerobic granular sludge (AGS) were investigated together with the microbial community structure of AGS. The PES microplastic concentration inhibited the removal of ammonia nitrogen only to a small extent. The average total nitrogen removal rate increased by 5.6% after PES addition. On the 30th day, the addition of 0.5 g/L PES inhibited the specific nitrate reduction rate (SNRR) by 38.84 mg N/(g MLSS·h). Nitrite oxidase (NOR) performance of the AGS were inhibited with addition the PES. According to the high-throughput sequencing results, in the presence of PES, the abundance of Bacillales_Incertae Sedis XII reduced, while the abundance of Anaerolineaceaen increased in the AGS. According to the clusters of orthologous groups (COG) and kyoto encyclopedia of genes and genomes (KEGG), the content of cytochrome c-containing reduced and the Amino Acid Metabolism increased with addition 0.5 g/L PES microplastic.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Weihong Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Anliu Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|