1
|
Rofeal M, Abdelmalek F, Pietrasik J. Sustainable Polyhydroxyalkanoate Production from Food Waste via Bacillus mycoides ICRI89: Enhanced 3D Printing with Poly (Methyl Methacrylate) Blend. Polymers (Basel) 2023; 15:4173. [PMID: 37896417 PMCID: PMC10610804 DOI: 10.3390/polym15204173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In view of implementing green technologies for bioplastic turning polices, novel durable feedstock for Bacillus mycoides ICRI89 used for efficient polyhydroxybutyrate (PHB) generation is proposed herein. First, two food waste (FW) pretreatment methods were compared, where the ultrasonication approach for 7 min was effective in easing the following enzymatic action. After treatment with a mixture of cellulase/amylases, an impressive 25.3 ± 0.22 g/L of glucose was liberated per 50 g of FW. Furthermore, a notable 2.11 ± 0.06 g/L PHB and 3.56 ± 0.11 g/L cell dry eight (CDW) over 120 h were generated, representing a productivity percentage of 59.3 wt% using 25% FW hydrolysate. The blend of polyhydroxybutyrate/poly (methyl methacrylate) (PHB/PMMA = 1:2) possessed the most satisfactory mechanical properties. For the first time, PHB was chemically crosslinked with PMMA using dicumyl peroxide (DCP), where a concentration of 0.3 wt% had a considerable effect on increasing the mechanical stability of the blend. FTIR analysis confirmed the molecular interaction between PHB and PMMA showing a modest expansion of the C=O stretching vibration at 1725 cm-1. The DCP-PHB/PMMA blend had significant thermal stability and biodegradation profiles comparable to those of the main constituent polymers. More importantly, a 3-Dimetional (3D) filament was successfully extruded with a diameter of 1.75 mm, where no blockages or air bubbles were noticed via SEM. A new PHB/PMMA "key of life" 3D model has been printed with a filling percentage of 60% and a short printing time of 19.2 min. To conclude, high-performance polymeric 3D models have been fabricated to meet the pressing demands for future applications of sustainable polymers.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
- Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| |
Collapse
|
2
|
Naveenkumar R, Iyyappan J, Pravin R, Kadry S, Han J, Sindhu R, Awasthi MK, Rokhum SL, Baskar G. A strategic review on sustainable approaches in municipal solid waste management andenergy recovery: Role of artificial intelligence,economic stability andlife cycle assessment. BIORESOURCE TECHNOLOGY 2023; 379:129044. [PMID: 37044151 DOI: 10.1016/j.biortech.2023.129044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
The consumption of energy levels has increased in association with economic growth and concurrently increased the energy demand from renewable sources. The need under Sustainable Development Goals (SDG) intends to explore various technological advancements for the utilization of waste to energy. Municipal Solid Waste (MSW) has been reported as constructive feedstock to produce biofuels, biofuel carriers and biochemicals using energy-efficient technologies in risk freeways. The present review contemplates risk assessment and challenges in sorting and transportation of MSW and different aspects of conversion of MSW into energy are critically analysed. The circular bioeconomy of energy production strategies and management of waste are also analysed. The current scenario on MSW and its impacts on the environment are elucidated in conjunction with various policies and amendments equipped for the competent management of MSW in order to fabricate a sustained environment.
Collapse
Affiliation(s)
- Rajendiran Naveenkumar
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Jayaraj Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602107, India
| | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates; Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Jeehoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India; Department of Applied Data Science, Noroff University College, Kristiansand, Norway.
| |
Collapse
|
3
|
Zhang H, Tian B, Yan X, Bai Y, Gao J, Li X, Xie Q, Yang Y, Li YW. Copyrolysis of Waste Cartons and Polyolefin Plastics under Microwave Heating and Characterization of the Products. ACS OMEGA 2023; 8:7331-7343. [PMID: 36873028 PMCID: PMC9979345 DOI: 10.1021/acsomega.2c05045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Municipal organic solid waste contains many recoverable resources, including biomass materials and plastics. The high oxygen content and strong acidity of bio-oil limit its application in the energy field, and the oil quality is mainly improved by copyrolysis of biomass with plastics. Therefore, in this paper, a copyrolysis method was utilized to treat solid waste, namely, common waste cartons and waste plastic bottles (polypropylene (PP) and polyethylene (PE)) as raw materials. The products were analyzed by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, GC, and GC/MS to investigate the reaction pattern of the copyrolysis. The results show that the addition of plastics can reduce the residue content by about 3%, and the copyrolysis at 450 °C can increase the liquid yield by 3.78%. Compared with single waste carton pyrolysis, no new product appeared in the copyrolysis liquid products but the oxygen content of the liquid decreased from 65% to less than 8%. The content of CO2 and CO in the copyrolysis gas product is 5-15% higher than the theoretical value; the O content of the solid products increased by about 5%. This indicates that waste plastics can promote the formation of l-glucose and small molecules aldehydes and ketones by providing H radicals and reduce the oxygen content in liquids. Thus, copyrolysis improves the reaction depth and product quality of waste cartons, which provides a certain theoretical reference for the industrial application of solid waste copyrolysis.
Collapse
|
4
|
Ebrahimian F, Denayer JFM, Mohammadi A, Khoshnevisan B, Karimi K. A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 368:128316. [PMID: 36375700 DOI: 10.1016/j.biortech.2022.128316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) is a widely-available promising feedstock for biofuel production. However, the presence of different inhibitors originating from fruit and food/beverage wastes as well as recalcitrant lignocellulosic fractions hampers its bioconversion. This necessitates a pretreatment to augment the biodigestibility and fermentability of OFMSW. Hence, this review aims to provide the in-vogue inhibitory compound removal and pretreatment techniques that have been employed for efficient OFMSW conversion into biofuels, i.e., hydrogen, biogas, ethanol, and butanol. The techniques are compared concerning their mode of action, chemical and energy consumption, inhibitor formation and removal, economic feasibility, and environmental sustainability. This critique also reviews the existing knowledge gap and future perspectives for efficient OFMSW valorization. The insights provided pave the way toward developing energy-resilient cities while addressing environmental crises related to generating OFMSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Denmark
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Ebrahimian F, Denayer JFM, Karimi K. Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. BIORESOURCE TECHNOLOGY 2022; 360:127609. [PMID: 35840021 DOI: 10.1016/j.biortech.2022.127609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Potato is the fourth most abundant crop harvested annually worldwide. Potato peel waste (PPW) is the main waste stream of potato-processing industries which is generated in large quantities and is a threat to the environment globally. However, owing to its compositional characteristics, availability, and zero cost, PPW is a renewable resource for the production of high-value bioproducts. Hence, this study provides a state-of-the-art overview of advancements in PPW valorization through biological and thermochemical conversions. PPW has a high potential for biofuel and biochemical generation through detoxification, pretreatment, hydrolysis, and fermentation. Moreover, many other valuable chemicals, including bio-oil, biochar, and biosorbents, can be produced via thermochemical conversions. However, several challenges are associated with the biological and thermochemical processing of PPW. The insights provided in this review pave the way toward a PPW-based biorefinery development, providing sustainable alternatives to fossil-based products and mitigating environmental concerns.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
6
|
Kartal F, Sezer S, Özveren U. Investigation of steam and CO2 gasification for biochar using a circulating fluidized bed gasifier model in Aspen HYSYS. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Rajendran N, Han J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. BIORESOURCE TECHNOLOGY 2022; 348:126796. [PMID: 35121100 DOI: 10.1016/j.biortech.2022.126796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study focused on the techno-economic analysis of integrated polyhydroxyalkanoates (PHAs) and biofuels such as biohydrogen, bioethanol, and 2,3-butanediol production from food waste (FW). Based on previous literature studies, the integrated process was developed. The process plan produced 2.01 MT of PHAs, 0.29 MT of biohydrogen, 4.79 MT of bioethanol, and 6.79 MT of 2,3-butanediol per day, from 50 MT of FW. The process plan has a positive net present value of 4.47 M$, a 13.68% return on investment, a payback period of 7.31 yr, and an internal rate of return of 11.95%. Sensitivity analysis was used to examine the economic feasibility. The actual minimum selling price (MSP) of PHAs was 4.83 $/kg, and the lowest achievable MSP with 30% solid loading is 2.41 $/kg. The solid loading in the hydrolysis stage and the price of byproducts have a major impact on the economic factors and MSP of PHAs.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea.
| |
Collapse
|
8
|
Shenbagamuthuraman V, Patel A, Khanna S, Banerjee E, Parekh S, Karthick C, Ashok B, Velvizhi G, Nanthagopal K, Ong HC. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. CHEMOSPHERE 2022; 286:131587. [PMID: 34303047 DOI: 10.1016/j.chemosphere.2021.131587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Alcohols could be the biggest factor for the improvement of world biofuel economy in the present century due to their excellent properties compared to petroleum products. The primary concerns of sustainable alcohol production for meeting the growing energy demand owing to the selection of viable feedstock and this might enhance the opportunities for developing numerous advanced techniques. In this review, the valorization of alcohol production from several production routes has been exposed by covering the traditional routes to the present state of the art technologies. Even though the fossil fuel conversion could be dominant method for methanol production, many recent innovations like photo electrochemical synthesis and electrolysis methods might play vital role in production of renewable methanol in future. There have been several production routes for production of ethanol and among which the fermentation of lignocellulose biomass would be the ultimate choice for large scale shoot up. The greenhouse gas recovery in the form of alcohols through electrochemistry technique and hydrogenation method are the important methods for commercialization of alcohols in future. It is also observed that algae based renewable bio-alcohols is highly influenced by carbohydrate content and sustainable approaches in algae conversion to bio-alcohols would bring greater demand in future market. There is a lack of innovation in higher alcohols production in single process and this could be bounded by combining dehydrogenation and decarboxylation techniques. Finally, this review enlists the opportunities and challenges of existing alcohols production and recommended the possible routes for making significant enhancement in production.
Collapse
Affiliation(s)
- V Shenbagamuthuraman
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Adamya Patel
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shaurya Khanna
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Eleena Banerjee
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shubh Parekh
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - C Karthick
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - G Velvizhi
- CO(2) Research and Green Technology Center, Vellore Institute of Technology, Vellore, 632014, India
| | - K Nanthagopal
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
9
|
Molina-Peñate E, Sánchez A, Artola A. Enzymatic hydrolysis of the organic fraction of municipal solid waste: Optimization and valorization of the solid fraction for Bacillus thuringiensis biopesticide production through solid-state fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:304-311. [PMID: 34823137 DOI: 10.1016/j.wasman.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/28/2023]
Abstract
To reach a more sustainable society, the implementation of a circular economy perspective in municipal waste management becomes essential. In this work, the enzymatic hydrolysis of source-separated organic fraction of municipal solid waste (OFMSW) has been optimized as a sugar-releasing step. A liquid sugar concentrate, with a maximum reducing sugar concentration of 50.56 g L-1, and a solid hydrolyzed fraction were obtained. The effect of the harshness of the hydrolysis conditions was evaluated on the performance of the resulting solid fraction as a substrate for Bacillus thuringiensis biopesticide production through solid-state fermentation. A production of 3.9 × 108 viable cells g-1 dry matter with a 33% sporulation ratio was achieved for milder hydrolysis conditions, highlighting the potential of the solid fraction of hydrolysis as a substrate of SSF processes. The proposed valorization pathway for the OFMSW results in a sugar concentrate with potential for fermentative processes and a fermented solid containing biopesticides from Bacillus thuringiensis.
Collapse
Affiliation(s)
- Esther Molina-Peñate
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Aeris Tecnologías Ambientales S.L, Carrer Santa Rosa, 38, local, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adriana Artola
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Zhang X, Liu C, Chen Y, Zheng G, Chen Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 24:11471-11513. [PMID: 34776765 PMCID: PMC8579419 DOI: 10.1007/s10668-021-01932-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/25/2021] [Indexed: 05/19/2023]
Abstract
Waste sorting is an effective means of enhancing resource or energy recovery from municipal solid waste (MSW). Waste sorting management system is not limited to source separation, but also involves at least three stages, i.e., collection and transportation (C&T), pretreatment, and resource utilization. This review focuses on the whole process of MSW management strategy based on the waste sorting perspective. Firstly, as the sources of MSW play an essential role in the means of subsequent valorization, the factors affecting the generation of MSW and its prediction methods are introduced. Secondly, a detailed comparison of approaches to source separation across countries is presented. Constructing a top-down management system and incentivizing or constraining residents' sorting behavior from the bottom up is believed to be a practical approach to promote source separation. Then, the current state of C&T techniques and its network optimization are reviewed, facilitated by artificial intelligence (AI) and the Internet of Things technologies. Furthermore, the advances in pretreatment strategies for enhanced sorting and resource recovery are introduced briefly. Finally, appropriate methods to valorize different MSW are proposed. It is worth noting that new technologies, such as AI, show high application potential in waste management. The sharing of (intermediate) products or energy of varying processing units will inject vitality into the waste management network and achieve sustainable development.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Yuexi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
11
|
Saadatinavaz F, Karimi K, Denayer JFM. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. BIORESOURCE TECHNOLOGY 2021; 341:125834. [PMID: 34479139 DOI: 10.1016/j.biortech.2021.125834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Orange waste (OW), an abundant and severe globally environmental treat, was used for biobutanol and biohydrogen production emploing acetone-butanol-ethanol (ABE) fermentation through a biorefinery process. The solvent yield from untreated OW was insufficient; thus, the substrate was subjected to hydrothermal pretreatment before hydrolysis. The pretreatment at 140 ℃ for 30 min resulted in the solid with the highest yield of hydrolysis and fermentation. Moreover, the anaerobic digestion of hydrolysis residue produced appreciable amounts of biomethane. However, the pretreatment liquor was not fermentable; thus, it was detoxified by overliming for 24 h at 30 ℃ and then fermented. Overall, this sustainable biorefinery, based on pretreatment without any additional chemical agent, hydrolysis of pretreated solids, detoxification of pretreatment liquor, ABE fermentation, and anaerobic digestion of residues, produced 42.3 g biobutanol, 33.1 g acetone, 13.4 g ethanol, 104.5 L biohydrogen, and 28.3 L biomethane per kg of OW that contained 4560 kJ energy.
Collapse
Affiliation(s)
- Fateme Saadatinavaz
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
12
|
Zaman SA, Ghosh S. A generic input-output approach in developing and optimizing an Aspen plus steam-gasification model for biomass. BIORESOURCE TECHNOLOGY 2021; 337:125412. [PMID: 34166930 DOI: 10.1016/j.biortech.2021.125412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Steam-gasification is drawing great interests as it yields higher H2 in syngas than any other gasification process. In this article, an equilibrium steam-gasification model developed in Aspen plus has been presented. The effect of the major input variables along with their synchronized effects on the response variables i.e., cold gas efficiency (CGE) and lower heating value (LHV) have been performed. Steam-gasification process optimization has been carried out employing response surface methodology (RSM) considering wide variety of biomass to get the best possible outcomes. The generic relations for both CGE and LHV as response variables have also been framed from obtained individual relations to estimate the response variables for considered biomass feeds at optimum operating conditions. The analysis reveals that the optimum response is obtained having almost 100% desirability (D) at the optimum operating condition (steam to biomass ratio of 0.7 and gasification temperature between 780 and 790 °C) of the steam-gasification model.
Collapse
Affiliation(s)
- Sk Arafat Zaman
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Sudip Ghosh
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
13
|
Li G, Ma S, Xue X, Yang S, Liu F, Zhang Y. Life cycle water footprint analysis for second-generation biobutanol. BIORESOURCE TECHNOLOGY 2021; 333:125203. [PMID: 33901910 DOI: 10.1016/j.biortech.2021.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Water is essential in conversion of crop to bioenergy. Therefore, it is important to carefully evaluate the impact of bioenergy technology on water source. Life cycle water footprints of biobutanol from wheat straw, corn grain and corn stover are analyzed in this study according to the characteristics of crop growing and climate conditions. The results show that life cycle water footprints of biobutanol from wheat straw, corn grain and corn stover are 271, 108 and 240 L H2O/MJ biobutanol, respectively. Life cycle water footprints of the crop production stage for wheat straw, corn grain and corn stover are 269.89, 107.84 and 238.95 L H2O/MJ biobutanol, respectively. Owing to the use of fertilizer in the crop production stage, gray water footprint of wheat straw, corn grain and corn stover accounts for 91.08%, 86.65% and 86.40% of the life cycle water footprint, respectively.
Collapse
Affiliation(s)
- Guang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China.
| | - Shuqi Ma
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Xiaoxiao Xue
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Shicheng Yang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Fan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| |
Collapse
|
14
|
Xu QT, Chen WX, Chen RP, Yu L. The role of anthraquinone-2-sulfonate on biohydrogen production by Klebsiella strain and mixed culture. BIORESOURCE TECHNOLOGY 2021; 334:125243. [PMID: 33957459 DOI: 10.1016/j.biortech.2021.125243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The role of anthraquinone-2-sulfonate (AQS) on biohydrogen production was explored in this study. The hydrogen molar yield (HMY) of the batch experiment with 0.2 mM AQS was not significantly improved comparing to that without AQS, but the acetate and ethanol yields were increased by 12.1% and 9.82%, respectively. According to the metabolites flux analysis, e- balance calculations and stoichiometry results, the biogenic anthrahydroquinone-2,6,-disulfonate (AH2QS) preferred to improve the H2 generation that catalyzed by hydrogenase, but not likely affect the H2 generation that through formate cleavage pathway (FCP). However, comparing to the mix culture without AQS, the hydrogen production rate and hydrogen yield were increased by 20.97% of 1.96%, respectively, in the presence of AQS. The results of this study provided better understanding of the role of AQS on biohydrogen production by the strain that follows FCP, and the synergistic biohydrogen production by the co-culture that follows FCP and butyrate/acetate pathway.
Collapse
Affiliation(s)
- Qing-Tao Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Xin Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China.
| |
Collapse
|
15
|
Yue T, Jiang D, Zhang Z, Zhang Y, Li Y, Zhang T, Zhang Q. Recycling of shrub landscaping waste: Exploration of bio-hydrogen production potential and optimization of photo-fermentation bio-hydrogen production process. BIORESOURCE TECHNOLOGY 2021; 331:125048. [PMID: 33798861 DOI: 10.1016/j.biortech.2021.125048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Shrub landscaping waste, derived from afforestation of city, has increased annually, making it a promising feedstock for energy production. In this work, the photo-fermentation bio-hydrogen production potential from shrub landscaping waste was evaluated. Eight kinds of shrub landscaping wastes (Photinia fraseri, Buxus megistophylla, Buxus sinica, Pittosporum tobira, Sabina Chinensis, Berberis thunbergii, Ligustrum vicaryi and Ligustrum quihoui) were selected as substrate and the photo-fermentation bio-hydrogen production process of which was optimized. Buxus megistophylla was found to be the most suitable substrate for photo-fermentation bio-hydrogen production. Moreover, the initial pH value, temperature and substrate concentration had significant influence on photo-fermentation bio-hydrogen production. The maximum cumulated hydrogen yield of Buxus megistophylla was 73.82 ± 0.06 mL/g TS under the optimal conditions of light intensity of 3000 Lux, substrate mass concentration of 21.49 g/L, temperature of 29.78 °C, inoculant amount of 25% and initial pH value of 6.78.
Collapse
Affiliation(s)
- Tian Yue
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Tian Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.
| |
Collapse
|
16
|
Srivastava N, Srivastava M, Abd Allah EF, Singh R, Hashem A, Gupta VK. Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach. CHEMOSPHERE 2021; 271:129537. [PMID: 33450424 DOI: 10.1016/j.chemosphere.2021.129537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
This review explores the sustainable feasibility of kitchen wastes to implement as an effective substrate for biohydrogen production through dark fermentation. Being organic in nature, kitchen wastes are enomerous source of nutrients and carbohydrate, which are produced in huge quantity in our daily life, and therefore can be potentially used for biohydrogen production through microbial technique. The review discussed in detail about the impact of kitchen waste, its availability and sustainability on the biohydrogen production process along with future scope at industrial scale for the production of sustainable and renewable energy. In addition, recent advances, and their possibility to enhance the fermentative biohydrogen production using kitchen waste have been covered. Emphasis is also made on the application of nanomaterials to increase the yield of biohydrogen production and to make the entire process more economical and sustainable while using kitchen wastes as substrate for the microbial fermentation. Finally, advantages, limitations and future prospects of the process of biohydrogen production using kitchen wastes as potential substrate have been discussed.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi, 221005, India.
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi, 221005, India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia; Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
17
|
Li J, Zhong Z, Du H, Li Q, Wang N, Zhao H, Huang J. Theoretical study on the adsorption mechanism of PbCl 2/CdCl 2 by kaolinite during municipal solid waste pyrolysis. CHEMOSPHERE 2021; 267:129184. [PMID: 33348267 DOI: 10.1016/j.chemosphere.2020.129184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
In the process of municipal solid waste (MSW) pyrolysis, kaolinite possesses an outstanding trapping effect on semi-volatile metal vapors (Pb, Cd) through physical and chemical adsorption. In this paper, the microscopic mechanism of PbCl2 and CdCl2 adsorption on the surface of Al rings and Si rings of kaolinite was investigated by combining Monte Carlo method with density functional theory (DFT). The calculations indicate that the continuously enriched pore structure in the process of dehydroxylation indirectly influences the adsorption of PbCl2/CdCl2 by kaolinite. Under the non-bond interaction and electron transfer induction, PbCl2 molecules are more conveniently adsorbed on the Al-(001) surface than CdCl2, while the adsorption sites of CdCl2 molecules are more widely distributed on the Si-(001) surface. Moreover, the transform in the Al-coordination and the exposed active oxygen atoms significantly affect the adsorption activity of kaolinite (the capability to gain and lose electrons). Considering the energy barrier and electrophilic nucleophilic sensitivity, it is more feasible for PbCl2/CdCl2 to be adsorbed near IV/V-coordinated Al and active O under Van der Waals action. Subsequently, IV/V-coordinated Al will act as an electron acceptor, and the active oxygen atoms after dehydrogenation will serve as an electron donor. Under the induction of the energy difference of frontier orbitals, the electrons transfer will encourage the formation of more stable adsorption states. The results shed new light on strengthening the adsorption activity of kaolinite to PbCl2/CdCl2 in the process of MSW pyrolysis.
Collapse
Affiliation(s)
- Jiefei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Ningbo Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hao Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jiawei Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
18
|
Qin S, Shekher Giri B, Kumar Patel A, Sar T, Liu H, Chen H, Juneja A, Kumar D, Zhang Z, Kumar Awasthi M, Taherzadeh MJ. Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 321:124496. [PMID: 33302013 DOI: 10.1016/j.biortech.2020.124496] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.
Collapse
Affiliation(s)
- Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Balendu Shekher Giri
- Center for Excellence for Sustainable Polymer, Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hongyu Chen
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| | | |
Collapse
|
19
|
Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141312. [PMID: 32814288 DOI: 10.1016/j.scitotenv.2020.141312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste management is one of the major issues throughout the world. Inappropriate management of municipal solid waste (MSW) can pose a major hazard. Anaerobic processing of MSW followed by methane and biogas generation is one of the numerous sustainable energy source options. Compared with other technologies applicable for the treatment of MSW, factors like economic aspects, energy savings, and ecological advantages make anaerobic processing an attractive choice. This review discusses the framework for evaluating conversion of municipal solid waste to energy and waste derived bioeconomy in order to address the sustainable development goals. Further, this review will provide an innovative work foundation to improve the accuracy of structuring, quality control, and pre-treatment for the ideal treatment of different segments of MSW to achieve a sustainable circular bioeconomy. The increasing advancements in three essential conversion pathways, in particular the thermochemical, biochemical, and physiochemical conversion methods, are assessed. Generation of wastes should be limited and resource utilization must be minimised to make total progress in a circular bioeconomy.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602 105, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Racchana Ramamurthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603 110, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601, DA, Delft, the Netherlands
| |
Collapse
|
20
|
Li G, Chang Y, Chen L, Liu F, Ma S, Wang F, Zhang Y. Process design and economic assessment of butanol production from lignocellulosic biomass via chemical looping gasification. BIORESOURCE TECHNOLOGY 2020; 316:123906. [PMID: 32739580 DOI: 10.1016/j.biortech.2020.123906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023]
Abstract
Biomass chemical looping gasification (BCLG) is a promising gasification technology to convert biomass into synthesis gas with no need for molecular oxygen. In this study, a novel process for butanol production from lignocellulosic biomass based on BCLG is proposed. The proposed process is simulated using Aspen Plus and composed of main sub-processes such as BCLG, acid gas removal, synthesis and separation of alcohol. An economic assessment is conducted according to results of Aspen Plus model. The equipment cost for the proposed process is evaluated as 4.65 × 108 CNY and the minimum butanol selling price is estimated as 9.35 CNY/kg. Sensitivity analysis of the process indicates that pine sawdust price has the largest effect on the minimum butanol selling price followed by total equipment cost and plant lifetime. Finally, impacts of CO conversion and carbon tax on the minimum butanol selling price are explored.
Collapse
Affiliation(s)
- Guang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China.
| | - Yuxue Chang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Lei Chen
- College of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, People's Republic of China
| | - Fan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Shuqi Ma
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, People's Republic of China
| |
Collapse
|
21
|
Ebrahimian F, Karimi K, Kumar R. Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:40-48. [PMID: 32784120 DOI: 10.1016/j.wasman.2020.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste is an environmental threat worldwide; however, the organic fraction of municipal solid waste (OF-MSW) has a great potential for the generation of fuels and high-value products. In the current study, OF-MSW was utilized for the production of ethanol, hydrogen, as well as 2,3-butanediol, an octane booster, by using Enterobacter aerogenes. Furthermore, a promising alternative to non-biodegradable petrochemical-based polymers, polyhydroxyalkanoates (PHAs), was produced. The OF-MSW was first pretreated by an acetic acid catalyzed ethanol organosolv pretreatment at 120 and 160 °C followed by enzymatic hydrolysis of the residual solids. The residual unhydrolyzed solids resulting from enzymatic hydrolysis were further anaerobically digested for methane production. The enzymatic hydrolysis of the solids prepared at 120 °C for 60 min led to the production of hydrolysate with the highest glucose production yield of 498.5 g/kg dry untreated OF-MSW, which was fermented to 139.1 g 2,3-butanediol, 98.3 g ethanol, 28.6 g acetic acid, 71.4 L biohydrogen, and 40 g PHAs. Moreover, 23.1 L biomethane was produced through the anaerobic digestion of the enzymatic hydrolysis residue solids. Thus, appreciable amounts of energy (8236.9 kJ) and an eco-friendly bioplastic were produced by the valorization of carbon sources available in OF-MSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rajeev Kumar
- Center of Environmental and Research Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
22
|
Lu JS, Chang Y, Poon CS, Lee DJ. Slow pyrolysis of municipal solid waste (MSW): A review. BIORESOURCE TECHNOLOGY 2020; 312:123615. [PMID: 32517890 DOI: 10.1016/j.biortech.2020.123615] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
In recent years, extensive studies have been carried out to improve our knowledge of the reactor operations and system performance in thermal pyrolysis of municipal solid wastes (MSW). However, the fundamentals of MSW pyrolysis and their engineering applications remain unsatisfactorily explored. This paper is a review of the pyrolysis of MSW and synergistic co-pyrolysis of the constituents of MSW with reference to pyrolytic performance, the distribution and energy content of the end products, and the mechanisms of the synergistic effects. The prospects for, and challenges of, the MSW pyrolysis process are provided. A MSW pyrolytic process with maximal energy recovery and minimal carbon footprint is proposed.
Collapse
Affiliation(s)
- Jia-Shun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yingju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
23
|
Potential applications of extracellular enzymes from Streptomyces spp. in various industries. Arch Microbiol 2020; 202:1597-1615. [PMID: 32451592 DOI: 10.1007/s00203-020-01898-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 01/21/2023]
Abstract
Extracellular enzymes produced from Streptomyces have the potential to replace toxic chemicals that are being used in various industries. The endorsement of this replacement has not received a better platform in developing countries. In this review, we have discussed the impact of chemicals and conventional practices on environmental health, and the role of extracellular enzymes to replace these practices. Burning of fossil fuels and agriculture residue is a global issue, but the production of biofuel using extracellular enzymes may be the single key to solve all these issues. We have discussed the replacement of hazardous chemicals with the use of xylanase, cellulase, and pectinase in food industries. In paper industries, delignification was done by the chemical treatment, but xylanase and laccase have the efficient potential to remove the lignin from pulp. In textile industries, the conventional method includes the chemicals which affect the nervous system and other organs. The use of xylanase, cellulase, and pectinase in different processes can give a safe and environment-friendly option to textile industries. Hazardous chemical pesticides can be replaced by the use of chitinase as an insecticide and fungicide in agricultural practices.
Collapse
|