1
|
Cui P, Wan N, Li C, Zou L, Ma M, Du J, Jiang Y. Comparative analysis of sulfur-driven autotrophic denitrification for pilot-scale application: Pollutant removal performance and metagenomic function. BIORESOURCE TECHNOLOGY 2024; 413:131433. [PMID: 39236908 DOI: 10.1016/j.biortech.2024.131433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Two parallel pilot-scale reactors were operated to investigate pollutant removal performance and metabolic pathways in elemental sulfur-driven autotrophic denitrification (SDAD) process under low temperature and after addition of external electron donors. The results showed that low temperature slightly inhibited SDAD (average total nitrogen removal of ∼4.7 mg L-1) while supplement of sodium thiosulfate (stage 2) and sodium acetate (stage 3) enhanced denitrification and secretion of extracellular polymeric substances (EPS), leading to the average removal rate of 0.75 and 1.01 kg N m-3 d-1, respectively with over twice higher total EPS. Correspondingly, nitrogen and sulfur related microbial metabolisms especially nitrite reductase and nitric oxide reductase encoding were promoted by genera including Thermomonas and Thiobacillus. The variations revealed that extra sodium acetate improved denitrification and enriched more SDAD-related microorganisms compared with sodium thiosulfate, which potentially catalyzed the refinement of practical strategies for optimizing denitrification in low carbon to nitrogen ratio wastewater treatment.
Collapse
Affiliation(s)
- Peng Cui
- Central and Southern China Municipal Design and Research Institute Co., Ltd, Wuhan 430070, China.
| | - Nianhong Wan
- Central and Southern China Municipal Design and Research Institute Co., Ltd, Wuhan 430070, China.
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Lei Zou
- Central and Southern China Municipal Design and Research Institute Co., Ltd, Wuhan 430070, China.
| | - Min Ma
- Wuhan City Drainage Development Co., Ltd, Wuhan 430070, China.
| | - Jing Du
- Wuhan City Drainage Development Co., Ltd, Wuhan 430070, China.
| | - Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Qi X, Han J, Kou Z, Liang P. Supplementary sulfide during inoculation for improved sulfur autotrophic denitrification performance and adaptation to low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166365. [PMID: 37598969 DOI: 10.1016/j.scitotenv.2023.166365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Elemental sulfur (S0) autotrophic denitrification (SAD) has been considered an advanced denitrification technology due to its low operating cost and small secondary pollution in wastewater treatment plants. However, the wide application of this technology is still challenged by its low denitrification rate, long start-up time, and poor low-temperature adaptation. This study employed supplementary sulfide to facilitate the conversion of S0 into polysulfide, a critical step in SAD. Batch experiments indicated that more polysulfide could be generated when S0 served as an electron donor and partnered with additional Na2S, leading to greatly increased nitrate removal than the controls. Particularly when the sulfide concentration was relatively high at 160 mg/L, a denitrification rate up to 11.3 mg-N/(L·d) was achieved, 3.8-fold of control group working with solely S0. Sulfide was further applied during inoculation of a packed bed reactor (PBR) with S0 particles and significantly benefit the development of biofilm. Although the feeding of sulfide was stopped after inoculation, the reactor was fast started up in just 2 days and delivered an average denitrification rate of 346.9 mg-N/(L·d), 1.4-fold of the control. In addition, benefit from the thick and well-developed biofilm, the reactor was able to restore its nitrate removal performance, when challenged by a low temperature (15 °C), to a larger rate than the control. Compared to short-term employment of the sulfide which was found a temporary solution addressing declined SAD rate during operating the PBR, applying sulfide for inoculation facilitated the formation of biofilm, leading to sustained improvement of SAD performance and better adaptation to coldness.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ziwei Kou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Zhang Q, Xu X, Zhang R, Shao B, Fan K, Zhao L, Ji X, Ren N, Lee DJ, Chen C. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism. WATER RESEARCH 2022; 226:119269. [PMID: 36279615 DOI: 10.1016/j.watres.2022.119269] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
4
|
Hao W, Li Q, Liu P, Han J, Duan R, Liang P. A new inoculation method of sulfur autotrophic denitrification reactor for accelerated start-up and better low-temperature adaption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153657. [PMID: 35122857 DOI: 10.1016/j.scitotenv.2022.153657] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Elemental sulfur (S0) autotrophic denitrification (SAD) has been proved feasible for nitrate removal from aquatic environments. The long start-up period up to weeks of the SAD reactor impedes its industrial application. To accelerate the start-up process, this study employed S0 powder packed sequencing batch reactor operated for 10 days to obtain a seed biofilm, which was inoculated into a regular S0 flake packed bed reactor afterwards. Merely two days after inoculation, the reactor inoculated with seed biofilm was well started up and outperformed the control reactor, which was inoculated with regular anaerobic sludge and operated for more than 10 days, delivering much increased denitrification rate of 126 ± 0.68 mg N/(L·d) and a high nitrate removal efficiency of 93.0%. Batch tests during the start-up period showed that the seed biofilm developed well on S0 flakes and delivered improved nitrate removal performance than the control. Extracellular polymeric substance (EPS) analysis revealed an abundant content of protein in tightly bound EPS in the biofilm developed from the seed biofilm, which was recognized as a major contributor to facilitate the biofilm's attachment and growth onto S0 flakes. After operating under moderate temperature, the reactors were tested at a reduced temperature of 15 °C. Results indicated that the reactor inoculated with seed biofilm showed stronger adaptation ability towards low temperature and sustained better denitrification performance than the control, which was attributed to increased protein content in tightly bound EPS produced by the microbes against low-temperature. Determination of the microbial communities in tested reactors when the whole experiment was closing found that sulfur-related genera were dominating in the packed-bed reactor inculcated with seed biofilm, which played an important role in the S0-based denitrification process.
Collapse
Affiliation(s)
- Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinbing Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Rui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Guerriero G, Mattei MR, Papirio S, Esposito G, Frunzo L. Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification. Sci Rep 2022; 12:7008. [PMID: 35487960 PMCID: PMC9054823 DOI: 10.1038/s41598-022-10944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a mathematical model to assess the effect of soluble microbial products production and external carbon source addition on the performance of a sulfur-driven autotrophic denitrification (SdAD) process. During SdAD, the growth of autotrophic biomass (AUT) was accompanied by the proliferation of heterotrophic biomass mainly consisting of heterotrophic denitrifiers (HD) and sulfate-reducing bacteria (SRB), which are able to grow on both the SMP derived from the microbial activities and on an external carbon source. The process was supposed to occur in a sequencing batch reactor to investigate the effects of the COD injection on both heterotrophic species and to enhance the production and consumption of SMP. The mathematical model was built on mass balance considerations and consists of a system of nonlinear impulsive differential equations, which have been solved numerically. Different simulation scenarios have been investigated by varying the main operational parameters: cycle duration, day of COD injection and quantity of COD injected. For cycle durations of more than 15 days and a COD injection after the half-cycle duration, SdAD represents the prevailing process and the SRB represent the main heterotrophic family. For shorter cycle duration and COD injections earlier than the middle of the cycle, the same performance can be achieved increasing the quantity of COD added, which results in an increased activity of HD. In all the performed simulation even in the case of COD addition, AUT remain the prevailing microbial family in the reactor.
Collapse
Affiliation(s)
- Grazia Guerriero
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy.
| | - Maria Rosaria Mattei
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
6
|
Guo G, Li Z, Chen L, Ling Q, Zan F, Isawi H, Hao T, Ma J, Wang Z, Chen G, Lu H. Advances in elemental sulfur-driven bioprocesses for wastewater treatment: From metabolic study to application. WATER RESEARCH 2022; 213:118143. [PMID: 35149365 DOI: 10.1016/j.watres.2022.118143] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Elemental sulfur (S0) is known to be an abundant, non-toxic material with a wide range of redox states (-2 to +6) and may serve as an excellent electron carrier in wastewater treatment. In turn, S0-driven bioprocesses, which employ S0 as electron donor or acceptor, have recently established themselves as cost-effective therefore attractive solutions for wastewater treatment. Numerous related processes have, to date, been developed from laboratory experiments into full-scale applications, including S0-driven autotrophic denitrification for nitrate removal and S0-reducing organic removal. Compared to the conventional activated sludge process, these bioprocesses require only a small amount of organic matter and produce very little sludge. There have been great efforts to characterize chemical and biogenic S0 and related functional microorganisms in order to identify the biochemical pathways, upgrade the bioprocesses, and assess the impact of the operating factors on process performance, ultimately aiming to better understand and to optimize the processes. This paper is therefore a comprehensive overview of emerging S0-driven biotechnologies, including the development of S0-driven autotrophic denitrification and S0-based sulfidogenesis, as well as the associated microbiology and biochemistry. Also reviewed here are the physicochemical characteristics of S0 and the effects that environmental factors such as pH, influent sulfur/nitrate ratio, temperature, S0 particle size and reactor configurations have on the process. Research gaps, challenges of process applications and potential areas for future research are further proposed and discussed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhaoling Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lei Chen
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qingshan Ling
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Heba Isawi
- Desert Research Center, Water Resources and Desert Soils Division, Egyptian Desalination Research Center of Excellence (EDRC), Cairo, Egypt
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Huang X, Duan C, Yu J, Dong W. Transforming heterotrophic to autotrophic denitrification process: Insights into microbial community, interspecific interaction and nitrogen metabolism. BIORESOURCE TECHNOLOGY 2022; 345:126471. [PMID: 34864178 DOI: 10.1016/j.biortech.2021.126471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
For investigating the microbial community, interspecific interaction and nitrogen metabolism during the transform process from heterotrophic to synergistic and autotrophic denitrification, a filter was built, and carbon source and sulfur concentration were changed to release the transformation process. The results demonstrated that the transformation process was feasible to keep nitrate nitrogen (NO3--N) discharge concentration lower than 15 mg L-1, however, nitrite nitrogen (NO2--N) accumulation and its rate reached 7.85% at initial stages. The dominant denitrification gunes were Methylophilaceae, Thiovulaceae and Hydrogenophilaceae for three processes, respectively, and the microbial interspecific interaction of heterotrophic denitrification was more complex than others. NO2--N accumulation was confirmed by the low abundance of EC1.7.7.1 and EC1.7.2.1, and the dominance degree of dark oxidation of sulfur compounds and dark sulfide oxidation improved in synthesis and autotrophic denitrifications.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Chongsen Duan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Kostrytsia A, Papirio S, Khodzhaev M, Morrison L, Collins G, Lens PNL, Ijaz UZ, Esposito G. Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors. CHEMOSPHERE 2022; 287:131975. [PMID: 34454228 DOI: 10.1016/j.chemosphere.2021.131975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Autotrophic denitrification with biosulfur (ADBIOS) provides a sustainable technological solution for biological nitrogen removal from wastewater driven by biogenic S0, derived from biogas desulfurization. In this study, the effect of different biofilm carriers (conventional AnoxK™ 1 and Z-200 with a pre-defined maximum biofilm thickness) on ADBIOS performance and microbiomics was investigated in duplicate moving bed-biofilm reactors (MBBRs). The MBBRs were operated parallelly in continuous mode for 309 days, whilst gradually decreasing the hydraulic retention time (HRT) from 72 to 21 h, and biosulfur was either pumped in suspension (days 92-223) or supplied in powder form. Highest nitrate removal rates were approximately 225 (±11) mg/L·d and 180 (±7) mg NO3--N/L·d in the MBBRs operated with K1 and Z-200 carriers, respectively. Despite having the same protected surface area for biofilm development in each MBBR, the biomass attached onto the K1 carrier was 4.8-fold more than that on the Z-200 carrier, with part of the biogenic S0 kept in the biofilm. The microbial communities of K1 and Z-200 biofilms could also be considered similar at cDNA level in terms of abundance (R = 0.953 with p = 0.042). A relatively stable microbial community was formed on K1 carriers, while the active portion of the microbial community varied significantly over time in the MBBRs using Z-200 carriers.
Collapse
Affiliation(s)
- Anastasiia Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino (FR), Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Murod Khodzhaev
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, United Kingdom.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
9
|
Yánez D, Guerrero L, Borja R, Huiliñir C. Sulfur-based mixotrophic denitrification with the stoichiometric S 0/N ratio and methanol supplementation: effect of the C/N ratio on the process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1420-1427. [PMID: 34851232 DOI: 10.1080/10934529.2021.2004839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The impact of the organic carbon to nitrate ratio (C/N ratio) on mixotrophic denitrification rate has been scarcely studied. Thus, this work aims to investigate the effect of the C/N ratio on the mixotrophic denitrification when methanol is used as a source of organic matter and elemental sulfur as an electron donor for autotrophic denitrification. For this, two initial concentrations of NO3--N (50 and 25 mg/L) at a stoichiometric ratio of S0/N, and four initial C/N ratios (0, 0.6, 1.2, and 1.9 mg CH3OH/mg NO3- -N) were used at 25 (±2) °C. The results showed that when using a C/N ratio of 0.6, the highest total nitrogen removal was obtained and the accumulation of nitrites was reduced, compared to an autotrophic system. The most significant contribution to nitrate consumption was through autotrophic denitrification (AuDeN) for a C/N ratio of 0.6 and 1.2, while for C/N = 1.9 the most significant contribution of nitrate consumption was through heterotrophic denitrification (HD). Finally, organic supplementation (methanol) served to increase the specific nitrate removal rate at high and low initial concentrations of substrate. Therefore, the best C/N ratio was 0.6 since it allowed for increasing the removal efficiency and the denitrification rate.
Collapse
Affiliation(s)
- Diana Yánez
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| | - Lorna Guerrero
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Rafael Borja
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Sevilla, Spain
| | - César Huiliñir
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Zhou Y, Chen F, Chen N, Peng T, Dong S, Feng C. Denitrification performance and mechanism of biofilter constructed with sulfur autotrophic denitrification composite filler in engineering application. BIORESOURCE TECHNOLOGY 2021; 340:125699. [PMID: 34391190 DOI: 10.1016/j.biortech.2021.125699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfur autotrophic denitrification (SAD) is a promising technology due to its low cost and low sludge production. Based on previous studies on SAD materials as well as the denitrification mechanism of SAD technology, this study constructed two biofilters with a sulfur autotrophic denitrification composite filler (SADCF) to investigate the application potential of SAD technology. The feasibility of a SADCF-based biofilter was demonstrated, with a maximum nitrate volume load of 0.75 kg N/(m3·d) and low accumulation of nitrite and ammonium. In addition, an improved backwashing method (air-water backwashing) was obtained by comparing two different backwashing methods. Furthermore, some iron reducing bacteria (0.4% Geothrix) along with a rapid proliferation of the main sulfur-oxidizing bacteria (23.0% Thiobacillus and 27.7% Ferritrophicum) were found under real-world operating conditions. Overall, the results of this study provide a case reference for the operation of SADCF-based biofilters and the application of SAD technology in engineering.
Collapse
Affiliation(s)
- Yin Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Fangxin Chen
- Beijing Nature Technology Development Co., Ltd, Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Tong Peng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shanshan Dong
- Beijing Nature Technology Development Co., Ltd, Beijing 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|