1
|
Medeiros Leão G, Silva Ribeiro MD, Filho RLD, Saraiva LB, Peña-Garcia RR, Teixeira APDC, Lago RM, Freitas FA, de Sá Barros S, Junior SD, Ruiz YL, Nobre FX. The Synergic Effect of h-MoO 3, α-MoO 3, and β-MoO 3 Phase Mixture as a Solid Catalyst to Obtain Methyl Oleate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60103-60121. [PMID: 39467908 PMCID: PMC11551912 DOI: 10.1021/acsami.4c08804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Extensive research in the last few decades has conclusively demonstrated the significant influence of experimental conditions, surfactants, and synthesis methods on semiconductors' properties in technological applications. Therefore, in this study, the synthesis of molybdenum oxide (MoO3) was reported by the addition of 2.5 (MoO3_2.5), 5 (MoO3_5), 7.5 (MoO3_7.5), and 10 mL (MoO3_10) of nitric acid, obtaining the respective concentrations of 0.6, 1.10, 1.6, and 0.6 mol L-1. In this study, all samples were synthesized by the hydrothermal method at 160 °C for 6 h. The materials obtained were structurally characterized by X-ray diffraction (XRD) and structural Rietveld refinement, Raman spectroscopy, and infrared spectroscopy (FTIR), confirming the presence of all crystallographic planes and bands associated with active modes for the pure hexagonal phase (h-MoO3) when the solution's concentration was 0.6 mol L-1 of nitric acid. For concentrations of 1.10, 1.60, and 2.10 mol L-1, the presence of crystallographic planes and active modes associated with the formation of mixtures of molybdenum oxide polymorphs was confirmed, in this case, the orthorhombic, monoclinic, and hexagonal phases. X-ray photoelectron spectroscopy reveals the occurrence of the states Mo4+, Mo5+, and Mo6+, which confirm the predominance of the acid Lewis sites, corroborating the analysis by adsorption of pyridine followed by characterization by infrared spectroscopy. The images collected by scanning electron microscopy confirmed the information presented in the structural characterization, where microcrystals with hexagonal morphology were obtained for the MoO3_2.5 sample. In contrast, the MoO3_5, MoO3_7.5, and MoO3_10 samples exhibited hexagonal and rod-shaped microcrystals, where the latter morphology is characteristic of the orthorhombic phase. The catalytic tests carried out in the conversion of oleic acid into methyl oleate, using the synthesized samples as a heterogeneous catalyst, resulted in conversion percentages of 52.5, 58.6, 69.1, and 97.2% applying the samples MoO3_2.5, MoO3_5, MoO3_7.5, and MoO3_10, respectively. The optimization of the catalytic tests with the MoO3_10 sample revealed that the conversion of oleic acid into methyl oleate is a thermodynamically favorable process, with a variation in the Gibbs free energy between -67.3 kJ mol-1 and 83.4 kJ mol-1 as also, the energy value of activation of 24.6 kJ mol-1, for the temperature range from 80 to 140 °C, that is, from 353.15 to 413.15 K, respectively. Meanwhile, the catalyst reuse tests resulted in percentages greater than 85%, even after the ninth catalytic cycle. Therefore, the expressive catalytic performance of the mixture of h-MoO3 and α-MoO3 (MoO3_10) phases is confirmed, associated with the synergistic effect, mainly due to the increase in the surface area and available Lewis sites of these phases.
Collapse
Affiliation(s)
- Gabrielle
Sophie Medeiros Leão
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| | - Marcos Daniel Silva Ribeiro
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| | | | - Libertalamar Bilhalva Saraiva
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| | - Ramón R. Peña-Garcia
- Universidade
Federal Rural de Pernambuco, Programa de
Pós-Graduação em Engenharia Física, UFPE, Recife, PE 52171-900, Brazil
| | | | - Rochel Montero Lago
- Departamento
de Química, ICEx, Universidade Federal
de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil
| | - Flávio Augusto Freitas
- Núcleo
de Materiais e Energia − Centro de Bionegócios da Amazônia, Av. Gov. Danilo de Matos Areosa,
160 - Distrito Industrial I, Manaus, AM 69075-351, Brazil
| | - Silma de Sá Barros
- Programa
de Pós-graduação em Engenharia de materiais,
Escola de Engenharia de Lorena, Universidade
de São Paulo, Estrada Municipal Chiquito de Aquino, n° 1000 − Mondesir, Lorena, SP 12612-550, Brazil
| | - Sérgio Duvoisin Junior
- Curso de
Engenharia Química, Universidade do Estado do Amazonas, Escola Superior de Tecnologia, Av. Darcy Vagas, 1200, Parque Dez de Novembro, Manaus, AM 69050-020, Brazil
| | - Yurimiler Leyet Ruiz
- Departamento
de Engenharia de Materiais, Laboratório
de Processamento de Materiais Tecnológicos (LPMaT), Universidade
Federal do Amazonas, Instituto de Ciências Exatas, Rua Av. General Rodrigo Otávio
Jordão Ramos, 1200, Coroado I, Manaus 69067-005, Brazil
| | - Francisco Xavier Nobre
- Departamento
de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos
Energéticos e Nanomateriais (GREEN Group), Instituto Federal
de Educação, Ciência
e Tecnologia do Amazonas, Campus Manaus Centro, Manaus 69020-120, AM, Brazil
| |
Collapse
|
2
|
Farouk SM, Tayeb AM, Abdel-Hamid SMS, Osman RM. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12722-12747. [PMID: 38253825 PMCID: PMC10881653 DOI: 10.1007/s11356-024-32027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Biodiesel, a renewable and sustainable alternative to fossil fuels, has garnered significant attention as a potential solution to the growing energy crisis and environmental concerns. The review commences with a thorough examination of feedstock selection and preparation, emphasizing the critical role of feedstock quality in ensuring optimal biodiesel production efficiency and quality. Next, it delves into the advancements in biodiesel applications, highlighting its versatility and potential to reduce greenhouse gas emissions and dependence on fossil fuels. The heart of the review focuses on transesterification, the key process in biodiesel production. It provides an in-depth analysis of various catalysts, including homogeneous, heterogeneous, enzyme-based, and nanomaterial catalysts, exploring their distinct characteristics and behavior during transesterification. The review also sheds light on the transesterification reaction mechanism and kinetics, emphasizing the importance of kinetic modeling in process optimization. Recent developments in biodiesel production, including feedstock selection, process optimization, and sustainability, are discussed, along with the challenges related to engine performance, emissions, and compatibility that hinder wider biodiesel adoption. The review concludes by emphasizing the need for ongoing research, development, and collaboration among academia, industry, and policymakers to address the challenges and pursue further research in biodiesel production. It outlines specific recommendations for future research, paving the way for the widespread adoption of biodiesel as a renewable energy source and fostering a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Sabah Mohamed Farouk
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EA&EAT), affiliated to the Ministry of Military Production, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt.
| | - Aghareed M Tayeb
- Faculty of Engineering, Minia University, Misr Aswan Agricultural Rd., EL MAHATTA, Menia Governorate, 2431384, Egypt
| | - Shereen M S Abdel-Hamid
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EA&EAT), affiliated to the Ministry of Military Production, Km. 3 Cairo Belbeis Desert Rd., Cairo Governorate, 3066, Egypt
| | - Randa M Osman
- Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza Governorate, Egypt
| |
Collapse
|
3
|
Bekele D, Shibeshi NT, Reshad AS. Catalytic Performance Investigation of Alkali and Bifunctional Catalysts Derived from Lignocellulosic Biomasses for Biodiesel Synthesis from Waste Frying Oil. ACS OMEGA 2024; 9:2815-2829. [PMID: 38250372 PMCID: PMC10795123 DOI: 10.1021/acsomega.3c08108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
In this study, alkali and bifunctional catalysts were synthesized for waste frying oil methyl ester (WFOME) synthesis. Coffee husk (CH) and CH blended with Eragrostis tef straw (TS) (CH-TS) lignocellulosic biomasses (LBs) were utilized during the catalysts' synthesis. The alkali catalysts were CH and CH-TS ashes, both modified by KNO3 impregnation. They are designated as C-45 and C-Mix, respectively. Zirconia (ZrO2) promoted CH ash catalysts via precipitation followed by impregnation (Bic-PP) and in situ precipitation-impregnation (Bic-Dm) were the bifunctional ones. CH and CH-TS chars were the supporting frameworks during the catalysts' composite materials (CCMs) preparation. The combustion performance of LBs and CCMs was evaluated and associated with the catalysts' physicochemical properties. Using XRD, SEM, FTIR, alkalinity, TOF, and BET surface area analysis, catalysts were characterized. The combustion performance of the LBs was in the order of TS > CH-TS > CH. Among CCMs, the highest combustion performance was for CCM-Mix (KNO3/(CH-TS char)) and the lowest was for CCM-45 (KNO3/ CH char). The C-Mix catalyst was a light green powder due to the reaction between inorganic components, whereas C-45 was dark gray due to the presence of unburned char. The CCMs for bifunctional catalysts had moderate combustion performance and yielded light gray powdered catalysts containing tetragonal ZrO2. The optimum WFOME yields were 98.08, 97, 92.69, and 93.05 wt % for C-Mix, C-45, Bic-Dm, and Bic-PP assisted WFO transesterification, respectively. The results were obtained at a reaction temperature of 65 °C, time of 1 h, and methanol to WFO molar ratio of 15:1 using catalyst amounts of 5 and 7 wt % for the alkali and bifunctional catalysts, respectively. The greatest moisture resistance was offered by the C-Mix catalyst. The best reusability was for the C-45 catalyst. Catalysts' deactivation modes include active site leaching and poisoning.
Collapse
Affiliation(s)
- Demelash
Tilahun Bekele
- Department
of Chemical Engineering, College of Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Nurelegne Tefera Shibeshi
- School
of Chemical and Bio-engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Ali Shemsedin Reshad
- Department
of Chemical Engineering, College of Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
- Center
of Excellence for Sustainable Energy Research, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| |
Collapse
|
4
|
Jan HA, Osman AI, Al-Fatesh AS, Almutairi G, Surina I, Al-Otaibi RL, Al-Zaqri N, Kumar R, Rooney DW. Biodiesel production from Sisymbrium irio as a potential novel biomass waste feedstock using homemade titania catalyst. Sci Rep 2023; 13:11282. [PMID: 37438448 PMCID: PMC10338498 DOI: 10.1038/s41598-023-38408-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Biomass waste streams are a possible feedstock for a range of eco-friendly products and a crucial alternative energy source for achieving carbon neutrality; therefore, the efficient management of biomass waste has taken on a greater significance in recent years. Due to its well-comparable physic-chemical properties with fossil diesel, biodiesel is a potential substitute for fossil fuel. This study aimed to synthesize biodiesel from the widely available non-edible seed oil of Sisymbrium irio L. (a member of the Brassicaceae family) via a transesterification procedure over a homemade TiO2 catalyst. At 1:16 oil to methanol ratio, 93% biodiesel yield was obtained over 20 mg catalyst at 60 °C and 60 min. The ASTM methods were used to analyze the fuel properties. The quantitative and qualitative analysis was performed by FT-IR, GC-MS, and NMR spectroscopy. GC-MS study confirms 16 different types of fatty acids of methyl esters. FT-IR analysis showed important peaks that confirm the successful occurrence of biodiesel. 1H-NMR and 13C-NMR showed important peaks for converting triglycerides into corresponding FAMEs. The acid value (0.42 mg KOH/mg/kg), flash point (106 °C), and water content (0.034) of biodiesel are below the specified limit of ASTM D6751 whereas kinetic viscosity (3.72 mm2/s), density (0.874 kg/L), cloud point (- 4.3 °C) and pour point (- 9.6 °C) and high heating value (41.62 MJ/kg) fall within the specified range of ASTM D6751 test limit. The Unsaturation degree and oxidative stability of biodiesel are above ASTM D6751 test limit. The physic-chemical properties of the SIB confirm that it is eco-friendly fuel and a competitive source for manufacturing biodiesel on a commercial scale. Furthermore, the SIB is engine friendly and has good fuel efficacy.
Collapse
Affiliation(s)
- Hammad Ahmad Jan
- Department of Botany, University of Buner, Swari, 19290, Pakistan
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
| | - Ghzzai Almutairi
- Water and Energy Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyath, Saudi Arabia.
| | - Igor Surina
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | | | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rawesh Kumar
- Department of Chemistry, Indus University, Ahmedabad, 382115, India
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK
| |
Collapse
|
5
|
Yadav N, Yadav G, Ahmaruzzaman M. Microwave-assisted biodiesel production using -SO 3H functionalized heterogeneous catalyst derived from a lignin-rich biomass. Sci Rep 2023; 13:9074. [PMID: 37277444 DOI: 10.1038/s41598-023-36380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
The synthesis of biodiesel from renewable resources has immense potential as a sustainable and cost-effective energy alternative. In this work, a reusable -SO3H functionalized heterogeneous catalyst that has a total acid density of 2.06 mmol/g was prepared from walnut (Juglans regia) shell powder by low-temperature hydrothermal carbonization (WNS-SO3H). Walnut shell (WNS) contains more lignin (50.3%), which shows great resistance toward moisture. The prepared catalyst was employed for the effective conversion of oleic acid to methyl oleate by a microwave-assisted esterification reaction. The EDS analysis revealed the significant presence of sulfur (4.76 wt%), oxygen (51.24 wt%), and carbon (44 wt%) content. The results of the XPS analysis confirm the bonding of C-S, C-C, C=C, C-O, and C=O. Meanwhile, the presence of -SO3H (the responsible factor for the esterification of oleic acid) was confirmed by FTIR analysis. Under the optimized conditions (9 wt% catalyst loading, 1:16 oleic acid to methanol molar ratio, 60 min reaction time, and 85 °C temperature), the conversion of oleic acid to biodiesel was found to be 99.01 ± 0.3%. The obtained methyl oleate was characterized by employing 13C and 1H nuclear magnetic spectroscopy. The conversion yield and chemical composition of methyl oleate were confirmed by gas chromatography analysis. In conclusion, it can be a sustainable catalyst because the catalyst preparation controls the agro-waste, a great conversion is achieved due to the high lignin content, and the catalyst was reusable for five effective reaction cycles.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Gaurav Yadav
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
| |
Collapse
|
6
|
Bekele D, Shibeshi NT, Reshad AS. KNO 3-Loaded Coffee Husk Ash as a Heterogeneous Alkali Catalyst for Waste Frying Oil Valorization into Biodiesel. ACS OMEGA 2022; 7:45129-45143. [PMID: 36530280 PMCID: PMC9753496 DOI: 10.1021/acsomega.2c05572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
In this study, a heterogeneous basic catalyst was synthesized from a catalyst composite material (CCM) of coffee husk ash and char mixture (A/C) impregnated with KNO3 and employed to transesterify crude waste frying oil (WFO). The effect of CCM calcination temperature (CCMCT) (500-700 °C) on the catalyst physicochemical properties was investigated. A differential scanning calorimeter was used to examine potential phase changes during the calcination of A/C and CCM. The catalysts from each CCMCT were characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller surface area analyzer, scanning electron microscopy (SEM), SEM with energy-dispersive X-ray diffractometer, colorimeter, and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometer. The methoxy functional group FTIR peak integral value and the dynamic viscosity of the biodiesel synthesized by each catalyst were used to determine the qualitative WFO conversion. Furthermore, the quantitative WFO conversion was determined using nuclear magnetic resonance (1H NMR) analysis. Crystallinity, elemental composition, basicity, and morphology of catalysts were highly dependent on the CCMCT. Without transesterification condition optimization (reaction temperature of 45 ± 2.5 °C, catalyst loading of 3 wt %, methanol to oil molar ratio of 12:1, and reaction time of 1 h), a higher catalytic performance (72.04% WFO conversion) was reached using a catalyst from the CCMCT of 600 °C. When using a coffee husk ash catalyst without KNO3 impregnation (C-00-600), the WFO conversion was only 52.92%. When comparing the C-25-600 and C-00-600 catalysts, it was observed that KNO3 impregnation had a substantial impact on the catalyst crystallinity, basicity, and morphology.
Collapse
Affiliation(s)
- Demelash
Tilahun Bekele
- Department
of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa16417, Ethiopia
| | - Nurelegne Tefera Shibeshi
- School
of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa1176, Ethiopia
| | - Ali Shemsedin Reshad
- Department
of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa16417, Ethiopia
- Center
of Excellence for Sustainable Energy Research, Addis Ababa Science and Technology University, Addis Ababa16417, Ethiopia
| |
Collapse
|
7
|
Jiru EB, Aklilu EG, Kasirajan R, Ancha VR. Modeling and Optimization of Biodiesel Production from Croton macrostachyus Leaves Oil. Appl Biochem Biotechnol 2022; 194:6037-6052. [PMID: 35876999 DOI: 10.1007/s12010-022-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
The biodiesel produced from Croton macrostachyus (CM) leaves mostly contains unsaturated fatty acid esters with low stability of oxidation. A Croton macrostachyus (CM) leaf, a non-edible resource, was utilized to produce biodiesel. This novel work focuses on the trans-esterification of species known as CM leaves oil to produce biodiesel with the help of CaO nanoparticle (CaO NPs)-catalyzed technique. The esterification process is optimized utilizing response surface methodology (RSM) based on central composite design (CCD). Four parameters that affect the production of biodiesel from Croton macrostachyus (CM) leaves oil have been examined. The optimum operating conditions for the selected four factors have been investigated as reaction time 25.95 min, temperature 63.325 °C, methanol to oil ratio 28.093:1 in mg/L, and catalyst concentration 3.001%wt with a desirability value of 1. Under the predicted parameters, to optimize the production of biodiesel, the quadratic mathematical models were developed. The optimized trans-esterification result showed that a 96.375% yield of biodiesel (FAME) was found. Three different experimental runs were carried out to validate the proposed model by using the optimized process parameters, and 95.818% (average) of experimental yield have been found. The CM leaves oil biodiesel physicochemical properties were obtained, and it was observed all the tasted properties agree with fuel specifications set by ASTM D6751 standards. In conclusion, this work formulates the baseline and the need for future exploration of CM leaves oil for biodiesel production through different methods.
Collapse
Affiliation(s)
- Edo Begna Jiru
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia.
| | - Ermias Girma Aklilu
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| | - Ramachandra Kasirajan
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| | - Venkata Ramayya Ancha
- Faculty of Mechanical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
8
|
Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental pollution caused by conventional petro-diesel initiates at time of crude oil extraction and continues until its consumption. The resulting emission of poisonous gases during the combustion of petroleum-based fuel has worsened the greenhouse effect and global warming. Moreover, exhaustion of finite fossil fuels due to extensive exploitation has made the search for renewable resources indispensable. In light of this, biodiesel is a best possible substitute for the regular petro-diesel as it is eco-friendly, renewable, and economically viable. For effective biodiesel synthesis, the selection of potential feedstock and choice of efficient catalyst is the most important criteria. The main objective of this bibliographical review is to highlight vital role of different catalytic systems acting on variable feedstock and diverse methods for catalysis of biodiesel synthesis reactions. This paper further explores the effects of optimized reaction parameters, modification in chemical compositions, reaction operating parameters, mechanism and methodologies for catalysts preparation, stability enhancement, recovery, and reusability with the maximum optimum activity of catalysts. In future, the development of well-planned incentive structures is necessary for systematic progression of biodiesel process. Besides this, the selection of accessible and amended approaches for synthesis and utilization of specific potential catalysts will ensure the sustainability of eco-green biodiesel.
Collapse
|
9
|
Sarangi PK, Anand Singh T, Joykumar Singh N, Prasad Shadangi K, Srivastava RK, Singh AK, Chandel AK, Pareek N, Vivekanand V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 351:127085. [PMID: 35358673 DOI: 10.1016/j.biortech.2022.127085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
Agricultural residues play a pivotal role in meeting the growing energy and bulk chemicals demand and food security of society. There is global concern about the utilization of fossil-based fuels and chemicals which create serious environmental problems. Biobased sustainable fuels can afford energy and fuels for future generations. Agro-industrial waste materials can act as the alternative way for generating bioenergy and biochemicals strengthening low carbon economy. Processing of pineapple generates about 60% of the weight of the original pineapple fruit in the form of peel, core, crown end, and pomace that can be converted into bioenergy sources like bioethanol, biobutanol, biohydrogen, and biomethane along with animal feed and vermicompost as described in this paper. This paper also explains about bioconversion process towards the production of various value-added products such as phenolic anti-oxidants, bromelain enzyme, phenolic flavour compounds, organic acids, and animal feed towards bioeconomy.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Thangjam Anand Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Ng Joykumar Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University) Visakhapatnam, 530 045 Andhra Pradesh, India
| | - Akhilesh K Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845 401 Bihar, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, São Paulo, Brazil
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017 Rajasthan, India.
| |
Collapse
|
10
|
Nawaz S, Ahmad M, Asif S, Klemeš JJ, Mubashir M, Munir M, Zafar M, Bokhari A, Mukhtar A, Saqib S, Khoo KS, Show PL. Phyllosilicate derived catalysts for efficient conversion of lignocellulosic derived biomass to biodiesel: A review. BIORESOURCE TECHNOLOGY 2022; 343:126068. [PMID: 34626762 DOI: 10.1016/j.biortech.2021.126068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.
Collapse
Affiliation(s)
- Sumra Nawaz
- Department of Plant Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; Faculty of Sciences, Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Mamoona Munir
- Department of Plant Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab 54000, Pakistan
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research Faisalabad, 38000, Pakistan
| | - Sidra Saqib
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab 54000, Pakistan
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Abstract
In this modern era, it has become essential to transform waste materials into valuables because of their excessive availability, along with achieving the targets of environmental protocols and waste management policies. With a growing population, the utilization and consumption of agricultural products have been increased extensively. In addition, it has increased the probability of agricultural waste generation. Waste produced from agricultural sources is considered as a viable source for synthesizing economical and ecofriendly catalysts and suitable ways for its disposal are sought. This study is targeted at agricultural waste-derived heterogeneous catalysts, which have been effectively employed for biodiesel generation. The types of agricultural waste, catalyst synthesis techniques, recent literature stated for agricultural waste-derived catalysts to produce biodiesel, the elemental composition and catalytic activity of agricultural waste ashes, the effect of reaction parameters to maximize biodiesel yield and catalyst reusability have been discussed. This work concludes that catalysts derived from agricultural waste are efficient in transesterification reaction, and they are easy to produce, and are cheap and ecofriendly. Moreover, this study encourages researchers to see the options for unexplored agricultural waste, which can be potentially converted into useful materials
Collapse
|
12
|
Silva Junior JL, Nobre FX, de Freitas FA, de Carvalho TAF, de Barros SS, Nascimento MC, Manzato L, Matos JME, Brito WR, Leyet Y, Couceiro PRC. Copper molybdate synthesized by sonochemistry route at room temperature as an efficient solid catalyst for esterification of oleic acid. ULTRASONICS SONOCHEMISTRY 2021; 73:105541. [PMID: 33839530 PMCID: PMC8058563 DOI: 10.1016/j.ultsonch.2021.105541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Copper molybdate nanoplates were synthesized by a sonochemical process at room temperature, which we report as a simple and cost-effective route. Structural analysis of the material by the Rietveld method of X-ray diffraction (XRD) data revealed lindgrenite Cu3(MoO4)2(OH)2 in a single-phase structure. All the vibrational modes characteristic of the space group were identified by Raman vibrational and near-infrared (NIR) spectroscopies. The profile obtained for N2 adsorption/desorption was type III hysteresis, characteristic of mesoporous materials, with a surface area of 70.77(1) m2 g-1. The micrographs of the material obtained by scanning electron microscopy showed nanoplates with nanometric sizes and an anisotropic growth aspect. The catalytic activity of lindgrenite was evaluated by esterifying oleic acid with methanol, showing high conversion rate to methyl oleate and good catalyst stability after seven recycling cycles. Above all, the best catalytic performance was reached when we optimized parameters such as oleic acid:methanol molar ratio of 1:5, 5% of catalyst dosage, and reaction time of 5 h, resulting in 98.38% of conversion at 413 K. Therefore, sonochemically synthesized lindgrenite proved to be a high potential material for biofuel production by oleic acid esterification.
Collapse
Affiliation(s)
- J L Silva Junior
- Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - F X Nobre
- Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil; Federal Institute of Amazonas, Campus Coari, Coari 69460-000, Brazil.
| | - F A de Freitas
- Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil; Amazon Biotechnology Center - CBA, Industrial District, Manaus 69075-351, Brazil
| | - T A F de Carvalho
- Department of Chemistry, Federal University of Piauí, Teresina 64049-550, Brazil
| | - S S de Barros
- Department of Materials Engineering, Federal University of Amazon, 69077-000 Manaus, Brazil
| | - M C Nascimento
- Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - L Manzato
- Federal Institute of Amazonas - IFAM, Distrito Industrial, 69.075-351, Manaus, AM, Brazil
| | - J M E Matos
- Department of Chemistry, Federal University of Piauí, Teresina 64049-550, Brazil
| | - W R Brito
- Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Y Leyet
- Department of Materials Engineering, Federal University of Amazon, 69077-000 Manaus, Brazil; LPMaT, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Departamento de Engenharia de Materiais, Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - P R C Couceiro
- Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil
| |
Collapse
|
13
|
Rezania S, Kamboh MA, Arian SS, Al-Dhabi NA, Arasu MV, Esmail GA, Kumar Yadav K. Conversion of waste frying oil into biodiesel using recoverable nanocatalyst based on magnetic graphene oxide supported ternary mixed metal oxide nanoparticles. BIORESOURCE TECHNOLOGY 2021; 323:124561. [PMID: 33373800 DOI: 10.1016/j.biortech.2020.124561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The magnetic graphene oxide (GO) supported with heterogeneous ternary mixed metal oxide (MMO) was used as nanocatalyst to enhance the conversion of waste frying oil (WFO) triglycerides to biodiesel via esterification process. In this regard, acidic MGO was modified with three basic metal cations of cerium, zirconium, and strontium oxides to produce heterogeneous MGO@MMO nanocatalyst. The nanocatalyst was characterized by FESEM, TEM, EDX and FTIR. The influence of different parameters such as catalyst material ratio, methanol to oil ratio, contact time, and reaction temperature was studied. Based on the results of effecting parameters, the MGO@MMO nanocatalyst converted WFO to biodiesel with a yield 94%, a reaction time of 90 min, methanol to oil ratio (8:1), and a temperature of 60 °C. Esterification mechanism indicated the MGO@MMO nanocatalyst having both binary Brønsted acid-base sites that increased the conversion yields as compared to MGO and MMO at low temperatures.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| | - Muhammad Afzal Kamboh
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh 67450, Pakistan
| | - Sadaf Sadia Arian
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh 67450, Pakistan
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India
| |
Collapse
|
14
|
Pereira PHF, Ornaghi HL, Arantes V, Cioffi MOH. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr Res 2021; 499:108227. [PMID: 33388571 DOI: 10.1016/j.carres.2020.108227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Recently, the growing environmental concerns and economic demands have driven the need to develop effective solutions for the treatment of vegetal fibers to be used as renewable source for various industrial applications. The present study aimed to explore pineapple crown fibers (PCs) as an alternative source of cellulose. The three treatments (alcohol-insoluble residue (AIR), alkaline (AT), and organosolv) evaluated promoted chemical and morphological changes to the PCs. Fresh and treated PCs were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), thermogravimetric analysis (TG), and chemical composition. The XRD results showed that the Cellulose-I allomorph was not altered during extraction, and that the crystallinity index of the fibers treated with AT, first bleaching step, second bleaching step, and the second bleaching step followed by KOH treatment (2B_KOH) increased to 77.8; 83.2; 83.5 and 86% when compared with fresh PC (62.3%). Results from the thermal analysis revealed that thermal stability increased for the isolated cellulose, and the maximum degradation for (2B_KOH) is 350 °C. Chemical composition results showed a decrease in the content of hemicellulose, lignin and other soluble materials after alkaline treatment, suggesting high-quality 2B_KOH with 74.6% of cellulose. SEM revealed changes in the morphological structure on fibers. Alkaline treatment followed by H2O2 bleaching is an excellent alternative for the removal of non-cellulosic material and facilitates the isolation of cellulose. These results suggested that there is a potential to isolate cellulose from PC via the sequence of treatment of a methodology by chlorite-free.
Collapse
Affiliation(s)
- Paulo Henrique Fernandes Pereira
- Fatigue and Aeronautical Material Research Group, Department of Materials and Technology, São Paulo State University (Unesp), School of Engineering, Guaratinguetá, 12516-410, São Paulo, Brazil.
| | - Heitor Luiz Ornaghi
- Fatigue and Aeronautical Material Research Group, Department of Materials and Technology, São Paulo State University (Unesp), School of Engineering, Guaratinguetá, 12516-410, São Paulo, Brazil
| | - Valdeir Arantes
- Biocatalysis and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Maria Odila Hilário Cioffi
- Fatigue and Aeronautical Material Research Group, Department of Materials and Technology, São Paulo State University (Unesp), School of Engineering, Guaratinguetá, 12516-410, São Paulo, Brazil
| |
Collapse
|
15
|
Laldinpuii ZT, Lalmuanpuia C, Lalhmangaihzuala S, Khiangte V, Pachuau Z, Vanlaldinpuia K. Biomass waste-derived recyclable heterogeneous catalyst for aqueous aldol reaction and depolymerization of PET waste. NEW J CHEM 2021. [DOI: 10.1039/d1nj03225a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eco-friendly biomass waste-derived recyclable heterogeneous catalyst for aldol reaction in water and for methanolysis of PET waste.
Collapse
Affiliation(s)
- Z. T. Laldinpuii
- Department of Chemistry, Mizoram University, Pachhunga University College Campus, Aizawl, Mizoram 796001, India
- Department of Chemistry, Mizoram University, Aizawl, Mizoram 796004, India
| | - Chhakchhuak Lalmuanpuia
- Department of Chemistry, Mizoram University, Pachhunga University College Campus, Aizawl, Mizoram 796001, India
- Department of Chemistry, Mizoram University, Aizawl, Mizoram 796004, India
| | - Samson Lalhmangaihzuala
- Department of Chemistry, Mizoram University, Pachhunga University College Campus, Aizawl, Mizoram 796001, India
- Department of Chemistry, Mizoram University, Aizawl, Mizoram 796004, India
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Mizoram University, Pachhunga University College Campus, Aizawl, Mizoram 796001, India
- Department of Chemistry, Mizoram University, Aizawl, Mizoram 796004, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Aizawl, Mizoram 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Mizoram University, Pachhunga University College Campus, Aizawl, Mizoram 796001, India
| |
Collapse
|