1
|
Pendse DS, Deshmukh M, Pande A. Different pre-treatments and kinetic models for bioethanol production from lignocellulosic biomass: A review. Heliyon 2023; 9:e16604. [PMID: 37260877 PMCID: PMC10227349 DOI: 10.1016/j.heliyon.2023.e16604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Lignocellulosic biomass is the generally explored substrate to produce bioethanol for environmental sustainability due to its availability in abundance. However, the complex network of cellulose-hemicellulose-lignin present in it makes its hydrolysis as a challenging task. To boost the effectiveness of conversion, biomass is pre-treated before enzymatic hydrolysis to alter or destroy its original composition. Enzymes like Cellulases are widely used for breaking down cellulose into fermentable sugars. Enzymatic hydrolysis is a complex process involving many influencing factors such as pH, temperature, substrate concentration. This review presents major four pre-treatment methods used for hydrolysing different substrates under varied reaction conditions along with their mechanism and limitations. A relative comparison of data analysis for most widely studied 10 kinetic models is briefly explained in terms of substrates used to get the brief insight about hydrolysis rates. The summary of pre-treatment methods and hydrolysis rates including cellulase enzyme kinetics will be the value addition for upcoming researchers for optimising the hydrolysis process.
Collapse
Affiliation(s)
- Dhanashri S Pendse
- Research Scholar, School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Minal Deshmukh
- School of Petroleum Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Ashwini Pande
- School of Petroleum Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, India
| |
Collapse
|
2
|
Saulnier BK, Siahkamari M, Singh SK, Nejad M, Hodge DB. Effect of Dilute Acid Pretreatment and Lignin Extraction Conditions on Lignin Properties and Suitability as a Phenol Replacement in Phenol-Formaldehyde Wood Adhesives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:592-602. [PMID: 36562625 DOI: 10.1021/acs.jafc.2c07299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Corn stover was subjected to dilute sulfuric acid pretreatment to assess the impact of pretreatment conditions on lignin extractability, properties, and utility as a phenol replacement in wood phenol-formaldehyde (PF) adhesives. It was identified that both formic acid and NaOH could extract and recover 60-70% of the lignin remaining after pretreatment and enzymatic hydrolysis under the mildest pretreatment conditions while simultaneously achieving reasonable enzymatic hydrolysis yields (>60%). The availability of reaction sites for the incorporation of lignins into the PF polymer matrix (i.e., unsubstituted phenolic hydroxyl groups) was shown to be strongly impacted by the pretreatment time and the recovery. Finally, a lignin-based wood adhesive was formulated by replacing 100% of the phenol with formic-acid-extracted lignin, which exhibited a dry shear strength exceeding a conventional PF adhesive. These findings suggest that both pretreatment and lignin extraction conditions can be tailored to yield lignins with properties targeted for this co-product application.
Collapse
Affiliation(s)
- Brian K Saulnier
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Mohsen Siahkamari
- Department of Forestry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sandip K Singh
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Mojgan Nejad
- Department of Forestry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David B Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
- Division of Sustainable Process Engineering, Luleå University of Technology, Luleå 97187, Sweden
| |
Collapse
|
3
|
Dong H, Sousa LDC, Ubanwa B, Jones AD, Balan V. A New Method to Overcome Carboxyamide Formation During AFEX Pretreatment of Lignocellulosic Biomass. Front Chem 2022; 9:826625. [PMID: 35127657 PMCID: PMC8814328 DOI: 10.3389/fchem.2021.826625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Lignin-carbohydrate complexes (LCCs) in the plant cell wall are responsible for providing resistance against biomass-degrading enzymes produced by microorganisms. Four major types of lignin-carbohydrate bonds are reported in the literature, namely, benzyl ethers, benzyl esters, phenyl glycosides, and acetyl ester linkages. Ester’s linkages in the plant cell wall are labile to alkaline pretreatments, such as ammonia fiber expansion (AFEX), which uses liquid or gaseous ammonia to cleave those linkages in the plant cell wall and reduce biomass recalcitrance. Two competing reactions, notably hydrolysis and ammonolysis, take place during AFEX pretreatment process, producing different aliphatic and aromatic acids, as well as their amide counterparts. AFEX pretreated grasses and agricultural residues are known to increase conversion of biomass to sugars by four- to five-fold when subjected to commercial enzyme hydrolysis, yielding a sustainable feedstock for producing biofuels, biomaterials, and animal feed. Animal feed trials on dairy cows have demonstrated a 27% increase in milk production when compared to a control feedstock. However, the presence of carboxamides in feedstocks could promote neurotoxicity in animals if consumed beyond a certain concentration. Thus, there is the need to overcome regulatory hurdles associated with commercializing AFEX pretreated biomass as animal feed in the United States. This manuscript demonstrates a modified pretreatment for increasing the digestibility of industrial byproducts such as Brewer’s spent grains (BSG) and high-fiber meal (HFM) produced from BSG and dry distillers grains with soluble (DDGS), while avoiding the production of carboxamides. The three industrial byproducts were first treated with calculated amounts of alkali such as NaOH, Ca(OH)2, or KOH followed by AFEX pretreatment. We found that 4% alkali was able to de-esterify BSG and DDGS more efficiently than using 2% alkali at both 10 and 20% solids loading. AFEX pretreatment of de-esterified BSG, HFM, and DDGS produced twofold higher glucan conversion than respective untreated biomass. This new discovery can help overcome potential regulatory issues associated with the presence of carboxamides in ammonia-pretreated animal feeds and is expected to benefit several farmers around the world.
Collapse
Affiliation(s)
- Hui Dong
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
| | - Leonardo da Costa Sousa
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, United States
| | - A. Daniel Jones
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Venkatesh Balan
- Department of Chemical Engineering and Material Science, Michigan State University, Lansing, MI, United States
- Department of Engineering Technology, College of Technology, University of Houston, Sugarland, TX, United States
- *Correspondence: Venkatesh Balan,
| |
Collapse
|