1
|
Mironov V, Zhukov V, Efremova K, Brinton WF. Enhancing aerobic composting of food waste by adding hydrolytically active microorganisms. Front Microbiol 2024; 15:1487165. [PMID: 39687869 PMCID: PMC11647035 DOI: 10.3389/fmicb.2024.1487165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
The biomass of native microorganisms in food waste (FW) suitable for accelerated composting is initially low and requires time for adaptation. Adding of efficient hydrolytic microorganisms should be able to enhance compost-specific microbial activity, adjust microbial community structure, and potentially hasten FW biodegradation. This study aimed to identify bacterial and fungal strains with growth characteristics suitable for accelerating FW composting. Over 7 weeks, FW was composted in a pilot-scale test, either inoculated at the start or on day 28 with three different mixtures of 10 autochthonous Bacillus and Penicillium spp. strains known for their high hydrolytic activity. The effects of inoculation were assessed by measuring the rate of carbon dioxide (CO2) and ammonia (NH3) production and also the increase in temperature due to spontaneous exothermic activity of the enhanced microbial population degrading FW. Inoculation with Bacillus spp., particularly B. amyloliquefaciens and B. subtilis, at the beginning of composting increased CO2 production nearly 3-fold while maintaining stable ammonia production and temperature. The high concentration of Bacillus relative to native FW microorganisms led to dominant fermentation processes even in the presence of oxygen, resulting in moderate heat release and elevated production of volatile organic compounds. Introducing Penicillium spp. at a later stage (day 28) increased CO2 production nearly 2-fold, along with higher NH3 levels and temperature. These findings highlight the significance of inoculation timing and microbial composition in regulating metabolic pathways during FW composting degradation, offering insights for designing effective microbial formulations for composting.
Collapse
Affiliation(s)
- Vladimir Mironov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Zhukov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Kristina Efremova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
2
|
Du S, Zhang M, Zhang S, Wen X, Wang Y, Wu D. Evaluation of the quality of products from multiple industrial-scale composting treatment facilities for kitchen waste and exploration of influencing factors. ENVIRONMENTAL RESEARCH 2024; 262:119899. [PMID: 39222732 DOI: 10.1016/j.envres.2024.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The aerobic composting process is extensively utilized to manage kitchen waste. Nonetheless, the variability in the quality of compost derived from engineering practices which significantly hinders its broader industrial application. This work investigated the final products of kitchen waste compost at multiple industrial-scale treatment facilities utilizing three distinct aerobic composting processes in a bid to explore key factors affecting compost quality. The quality evaluation was based on technical parameters like seed germination index (GI), and limiting factors such as heavy metal content. The results showed that most of the compost products failed to meet the established standards, with GI being the primary limiting indicator. Furthermore, maturity assessments suggested that compost with low GI exhibited reduced humification could not be recommended for agricultural use. The investigation delved into the primary determinants of GI, focusing on risk factors such as the oil and salt of kitchen waste, and the microbial community of the humification driving forces. The results indicated that products with low GI had higher oil and salt content and a relatively simple microbial community. A thorough analysis suggested that excessive levels oil and salt were potential influencing factors on GI, as they stimulated the activity of acid-producing bacteria like Lactobacillus, suppressed the activity of humification-promoting bacteria such as Actinomarinales, and influenced the decomposition and humification processes of organic matter and total nitrogen, thereby affecting product quality. The findings provide valuable insights for improving kitchen waste compost products for agricultural applications.
Collapse
Affiliation(s)
- Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingjie Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuchi Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yida Wang
- Hangzhou Changhong Environmental Protection Technology Co, Ltd., Hangzhou, 310030, China
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Yang J, Guo Z, Al-Dhabi NA, Shi J, Peng Y, Miao B, Liu H, Liang Y, Yin H, Liu X, Tang W, Jiang L. The succession of microbial community and distribution resistance gene in response to enrichment cultivation derived from a long-term toxic metal(loid)s polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176385. [PMID: 39304162 DOI: 10.1016/j.scitotenv.2024.176385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Microbial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing. And the co-occurrence relationships between soil microbial community after enrichment cultivation and MRGs genes were also analyzed through the BacMet database. Results showed that the dominant genus in the soils was Lactobacillus and Stenotrophomonas. The soil microbial community exhibited a notable correlation with Cd, Pb, and As, among which Cd exerted the most profound impact. Alishewanella, Pseudomonas, Massilia and Roseibacillus were significantly correlated with the fraction of Cd. After enrichment cultivation, the number of genera decrease to 96. And the dominant genus changed to Acinetobacter, Bacillus, Comamonas, Lysobacter, and Pseudoxanthomonas. High abundance of metal resistance genes (MRGs) including zntA, fpvA, zipB, cadA, czcA, czcB, czcC, zntA, arsR, pstS and pstB was found in the microbial community after enrichment cultivation. The potential host genus for MRGs was Acinetobacter, Comamonas, Lysinibacillus, Azotobacter, Bacillus, Lysobacter, Cupriavidus, Pseudoxanthomonas, and Thermomonas. Additionally, these microbial community after enrichment cultivation possessing pathways of bacterial chemotaxis and two-component systems was enabled them to adapt to the polluted environment. These observations provided potential guidance for microbe isolation and the development of strategies for the bioremediation of toxic metal(loid)s polluted soils.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Han Y, Yang Z, Yin M, Zhang Q, Tian L, Wu H. Exploring product maturation, microbial communities and antibiotic resistance gene abundances during food waste and cattle manure co-composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175704. [PMID: 39214357 DOI: 10.1016/j.scitotenv.2024.175704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This study proposed combining food waste (FW) and cattle manure (CM) in composting to improve the product maturity. The findings suggested that the inclusion of CM effectively extended the thermophilic stage, facilitated the decomposition of cellulose, and enhanced the production of humus-like substances by enhancing beneficial microbial cooperation. Adding 40 % CW was optimal to reduce the nitrogen loss, increase the cellulose degradation rate to 22.07 %, increase germination index (GI) to 140 %, and reduce normalized antibiotic resistance gene (ARG) abundances. Adding CW could promote the transformation of protein-like compounds, thereby enhancing the humification process of organic substances. Structural equation modeling further verified that the temperature was the key factor affecting humification production, while the main driver for ARGs was physiochemical parameters. This study shows that co-composting of FW and CM offers the potential to promote humification, reduce ARG abundance, and improve fertilizer quality for utilization of both biowastes in the field.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zijian Yang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Meiqi Yin
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China.
| | - Lili Tian
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China
| | - Hao Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
5
|
Chun J, Kim SM, Ko G, Shin HJ, Kim M, Cho HU. Thermophilic aerobic digestion using aquaculture sludge from rainbow trout aquaculture facilities: effect of salinity. Front Microbiol 2024; 15:1488041. [PMID: 39569003 PMCID: PMC11576446 DOI: 10.3389/fmicb.2024.1488041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
The objectives of this study were to evaluate the potential of using thermophilic aerobic digestion (TAD) to hydrolyze aquaculture sludge, and to investigate the hydrolysis efficiency and changes in microbial community structure during TAD at 0, 15, and 30 practical salinity units (psu). As digestion progressed, soluble organic matter concentrations in all reactors increased to their maximum values at 6 h. The hydrolysis efficiency at 6 h decreased as salinity increased: 2.42% at 0 psu, 1.78% at 15 psu, and 1.04% at 30 psu. The microbial community compositions at the genus level prominently differed in the relative abundances of dominant bacteria between 0 psu and 30 psu. The relative abundance of genera Iodidimonas and Tepidiphilus increased significantly as salinity increased. Increase in the salinity at which thermophilic aerobic digestion of aquaculture sludge was conducted altered the microbial community structure, which in turn decreased the efficiency of organic matter hydrolysis.
Collapse
Affiliation(s)
- Jihyun Chun
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Su Min Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Gwangil Ko
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Hyo Jeong Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Minjae Kim
- Civil Engineering, University of Kentucky, Lexington, KY, United States
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| |
Collapse
|
6
|
Mgeni ST, Mero HR, Mtashobya LA, Emmanuel JK. The prospect of fruit wastes in bioethanol production: A review. Heliyon 2024; 10:e38776. [PMID: 39421386 PMCID: PMC11483485 DOI: 10.1016/j.heliyon.2024.e38776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.
Collapse
Affiliation(s)
- Shedrack Thomas Mgeni
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Herieth Rhodes Mero
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Lewis Atugonza Mtashobya
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | | |
Collapse
|
7
|
Yi P, Li Q, Zhou X, Liang R, Ding X, Wu M, Wang K, Li J, Wang W, Lu G, Zhu T. Inoculation of Saccharomyces cerevisiae for facilitating aerobic composting of acidified food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55507-55521. [PMID: 39231841 DOI: 10.1007/s11356-024-34876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
In aerobic composting of food waste, acidification of the material (acidified food waste, AFW) often occurs and consequently leads to failure of fermentation initiation. In this study, we solved this problem by adding Saccharomyces cerevisiae inoculants. The results showed that the inoculation with S. cerevisiae effectively promoted the composting process. In 2 kg composting, inoculation with S. cerevisiae significantly elevated the pile temperatures by 4 ~ 14 °C, accompanied by a rapid increase in pH from 4.5 to 6.0. In 15 kg composting, total acid decreased faster and the thermophilic stage above 50 °C was prolonged by 3 days longer than in the control. The residual oxygen content in the reactor indicated that S. cerevisiae, which proliferated during composting, increased microbial activity and reduced ammonia emission during the thermophilic phase. Cell density analysis showed that compost inoculated with S. cerevisiae promoted thermophilic bacterial propagation. Metagenomic analysis showed that the dominant bacteria in the AFW compost were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria, and the relative abundance of Bacillus, Thermobacillus, and Thermobifida increased when inoculated with S. cerevisiae. These results indicate that the inoculation of S. cerevisiae is an effective strategy to improve the aerobic composting process of AFW by accelerating the initial phase and altering microbial community structure in the thermophilic phase. Our findings suggest that S. cerevisiae can be applied to aerobic composting of organic wastes to effectively address the problem of acidification.
Collapse
Affiliation(s)
- Puhong Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinping Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xueli Zhou
- Qinghai Grassland Improvement Experimental Station, Gonghe, 813000, China
| | - Ruiqi Liang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China
| | - Ming Wu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China
| | - Weixia Wang
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China.
| |
Collapse
|
8
|
Han Y, Zhang Y, Yang Z, Zhang Q, He X, Song Y, Tian L, Wu H. Improving Aerobic Digestion of Food Waste by Adding a Personalized Microbial Inoculum. Curr Microbiol 2024; 81:277. [PMID: 39028528 DOI: 10.1007/s00284-024-03796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
In the context of China's garbage classification policy, on-site aerobic food waste (FW) digestion is crucial for reducing transportation and disposal costs. The efficiency of this process is largely determined by the microbial community structure and its functions. Therefore, this study aimed to analyze the impact of a personalized microbial consortium (MCM) on the efficiency of aerobic FW digestion and to reveal the underlying mechanisms. An MCM, sourced from naturally degrading FW, was selected to enrich degrading bacteria with relatively high hydrolyzing ability. The functionality of the MCM was evaluated by tracing the successions of microbial communities, and comparing the differences in the forms of organic compounds, metabolic functions, and hydrolase activities. X-ray photoelectron spectroscopy demonstrated that the MCM metabolized faster, and produced more acidic metabolites. Metagenomic analysis indicated that FW inoculated with the personalized MCM increased abundance of Bacillaceae producing hydrolysis enzymes and promoted glycolysis metabolic pathways, enhancing energy generation for metabolism, compared to the commercial effective bacterial agent. This paper provides both theoretical and practical evidence for the improvement of biochemical processor of FW with the personalized MCM, which has promising application prospects and economic value.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China.
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China.
| | - Yuman Zhang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
| | - Zijian Yang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, P.R. China
| | - Yu Song
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, P.R. China
| | - Lili Tian
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China
| | - Hao Wu
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, P.R. China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, Hebei, P.R. China
| |
Collapse
|
9
|
Zheng H, Wang M, Fan Y, Yang J, Zhao Z, Chen H, Ye Z, Zheng Z, Yu K. Reuse of composted food waste from rural China as vermicomposting substrate: effects on earthworms, associated microorganisms, and economic benefits. ENVIRONMENTAL TECHNOLOGY 2024; 45:2685-2697. [PMID: 36846968 DOI: 10.1080/09593330.2023.2184728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
ABSTRACTAerobic composting of food waste (FW) from rural China using a composting device results in a substantial financial burden on the government. This study aimed to assess the feasibility of mitigating this cost using vermicomposting of composted FW. The specific aims were to elucidate the effects of composted FW on earthworm growth and reproduction, reveal the changes in the physical and chemical properties of earthworm casts during vermicomposting, identify the microbial community structure associated with vermicomposting, and perform a financial analysis based on the yield of earthworms and earthworm casts. Mixing composted FW and mature cow dung in an equal ratio achieved the highest earthworm reproduction rate, where 100 adult earthworms produced 567 juvenile earthworms and 252 cocoons in 40 d. Earthworms reduce salt content of vermicomposting substrates by assimilating Na+ and promoting humification by transforming humin into humic and fulvic acid, thus producing earthworm casts with a high generation index > 80%. When composted FW was added to a vermicomposting substrate, a distinctive microbial community structure with alkaliphilic, halophilic, and lignocellulolytic microorganisms dominated the microflora. The dominant bacterial species was Saccharopolyspora rectivirgula, and the dominant fungal species changed from Kernia nitida to Coprinopsis scobicola. Furthermore, microbial genes for refractory organic matter and fat degradation were observed in Vibrio cholerae, Kernia nitida, and Coprinopsis scobicola. Financial analysis showed that vermicomposting has the potential to reduce the cost associated with FW disposal from $ 57 to $ 18/t.
Collapse
Affiliation(s)
- Huabao Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Min Wang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Yueqin Fan
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Jian Yang
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhuoqun Zhao
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Hengyuan Chen
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| | - Zhenwei Ye
- Office of Qingshanhu strict, Government of Linan district, Linan, People's Republic of China
| | - Zhanwang Zheng
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
- Zhejiang Sunda Public Environmental Protection Co. Ltd., Hangzhou, People's Republic of China
| | - Kefei Yu
- College of Environmental and Resource Science, Zhejiang A&F University, Linan, People's Republic of China
| |
Collapse
|
10
|
Xu S, Tao L, Wang J, Zhang X, Huang Z. Rapid in-situ aerobic biodegradation of high salt and oily food waste employing constructed synthetic microbiome. Eng Life Sci 2024; 24:2200067. [PMID: 38708412 PMCID: PMC11065329 DOI: 10.1002/elsc.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 02/05/2023] Open
Abstract
The high salt content of food waste (FW) severely limits microbial physiological activity and reduces its biodegradability. In this study, a salt-tolerant thermophilic bacterial agent that consists of four different substrate degradation functional strains was evaluated for efficient high salt and oily FW in solid-state aerobic biodegradation disposers. The phy-chemical properties, enzyme activities, microbial community structure, and function during the biodegradation process were evaluated under high salt (5%) stress. The results showed that the agent promoted the degradation rate, increased the matrix temperature, decreased the moisture content (MC), and enhanced enzyme activities without putrid smell. High-throughput sequencing indicated community structure succession between different groups and the positive contribution of the inoculated functional strains. During the FW biodegradation process, the Bacillus sp. inoculated was the dominant genus in the agent group. Furthermore, CCA further confirmed the positive effects of the four inoculated strains on high salt and oily FW aerobic biodegradation. Functional prediction and metabolite results both confirmed that the agent was more efficient in carbon, amino acid, and lipid metabolism, which demonstrated that the synthetic microbial consortium holds a potential advantage for efficiency and subsequent resource utilization for organic fertilizer.
Collapse
Affiliation(s)
- Song Xu
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Lidan Tao
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Jingjing Wang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Zhiyong Huang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| |
Collapse
|
11
|
Wang J, Li C, Awasthi MK, Nyambura SM, Zhu Z, Li H, Xu J, Feng X, Zhu X, Syed A, Wong LS, Luo W. Utilising standard samples instead of randomly collected food waste in composting: Implementation strategy and feasibility evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120182. [PMID: 38278112 DOI: 10.1016/j.jenvman.2024.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Randomly collected food waste results in inaccurate experimental data with poor reproducibility for composting. This study investigated standard food waste samples as replacements for randomly collected food waste. A response surface methodology was utilised to analyse data from a 28-day compost process optimisation experiment using collected food waste, and the optimal combination of composting parameters was derived. Experiments using different standard food waste samples (high oil and salt, high oil and sugar, balanced diet, and vegetarian) were conducted for 28 days under optimal conditions. The ranking of differences between the standard samples and collected food waste was vegetarian > balanced diet > high oil and sugar > high oil and salt. Statistical analysis indicated t-tests for increased oil and salt samples and collected food waste were not significant, and Cohen's d effect values were minimal. High oil and salt samples can be used as replacements for collected food waste in composting experiments.
Collapse
Affiliation(s)
- Jufei Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Li
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China
| | - Samuel Mbugua Nyambura
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenming Zhu
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Li
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Jialiang Xu
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xuebin Feng
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xueru Zhu
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China; Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province/Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Wei Luo
- CITIC Envirotech Guangzhou Co Ltd, Guangzhou 510000, China
| |
Collapse
|
12
|
Liu S, Hou J, Zhang S, Zhang X, Zhang Q. The transformation of heavy metal speciation during rapid high-temperature aerobic fermentation of food waste and their potential mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119030. [PMID: 37741195 DOI: 10.1016/j.jenvman.2023.119030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
In this study, the content changes of multiple trace heavy metals (HMs) in food waste using a new rapid high-temperature aerobic fermentation (RTAF) technology and their relationships with different physicochemical factors were researched. The results indicated that the content of HMs in the decomposed products met the industry standards for organic fertilizers (NY/T525-2021, China). Physicochemical factors played an important role in controlling the changes in HM content. The component evolution of dissolved organic matter was studied, and its influences on the transformation of HM speciation showed that the RTAF process converted proteins into humus-like substances. Redundancy analysis revealed that the main factors driving the speciation transformation of HMs were tyrosine-like substances or microbial-derived humus (C3), molecular weight of dissolved organic matter (SUVA254) and humification degree (E250/E365). The increase in humification degree contributed to passivating HMs. The correlation network analysis results showed that the exchangeable HMs (Exc-HMs) were related to Lactobacillus and Pediococcu. Additionally, the cytoskeleton, coenzyme transport and metabolic function of microorganisms affected the Exc-HM content. These research results can provide a scientific basis for the prevention and control of HM pollution during the treatment of food waste.
Collapse
Affiliation(s)
- Shujia Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Shanghai SUS Environment Co, LTD., Shanghai, 201703, China
| | - JinJu Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai, 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
13
|
Yin S, Jiang X, Wang Y, Yang Y, Chen D, Shen J. Defense mechanism of Fe(III)-assisted anammox under salt stress: Performance and microbial community dynamics. WATER RESEARCH X 2023; 20:100188. [PMID: 37671038 PMCID: PMC10477044 DOI: 10.1016/j.wroa.2023.100188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 09/07/2023]
Abstract
Anammox process has attracted attention due to its excellent nitrogen removal properties in nitrogen-rich wastewater treatment. However, there were some obstacles for the application of anammox to treat high saline wastewater due to its sensitivity to salinity. In this study, Fe(III) addition strategy was developed to assist anammox to adapt high saline surroundings, with the defense mechanism involved in Fe(III)-assisted anammox emphasized. Nitrogen removal performance of anammox was deteriorated at 3.5% salinity, with the average total nitrogen removal rate of 0.85 kg/(m3·d) observed. The continuous addition of Fe(III) could significantly assist anammox to resist high salinity through facilitating the enrichment of anammox species. Candidatus Kuenenia was the main anammox species and outcompeted Candidatus Brocadia under high saline surrounding. The relative abundance of Candidatus Kuenenia increased with increased salinity and reached 41.04% under 3.5% salinity. The synthesis of key enzymes of anammox species were improved through Fe(III) addition and then facilitated the energy metabolism of anammox bacteria under 3.5% salinity. This study provides a new thought in Fe(III)-assisted anammox enhancement technologies and deepens the insight of anammox in high saline wastewater treatment.
Collapse
Affiliation(s)
- Shuyan Yin
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuming Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Yang J, Shi J, Jiang L, Zhang S, Wei F, Guo Z, Li K, Sarkodie EK, Li J, Liu S, Liu H, Liang Y, Yin H, Liu X. Co-occurrence network in core microorganisms driving the transformation of phosphorous fractionations during phosphorus recovery product used as soil fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162081. [PMID: 36754325 DOI: 10.1016/j.scitotenv.2023.162081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus recovery from water and the subsequent reuse of its products can solve both water eutrophication and phosphorus resource waste issues. However, the potential use of the final recovered products as crop phosphorus fertilizers and the transformation of phosphorus fractions in soils have rarely been analyzed. In this study, the effects of a phosphorus recovery product (w-HC/CSH/P) obtained from our previous phosphorus recovery study on pepper growth were investigated. The association between soil phosphorus fraction transformation and the microbial co-occurrence network was investigated using high-throughput sequencing. The results showed that amendment with w-HC/CSH/P could promote the growth and chlorophyll content of pepper, which exhibited high phosphorus fertilizer efficiency. In addition, applying w-HC/CSH/P in soils could increase the microbial alpha-diversity during pepper cultivation and induce changes in the microbial community, leading to an increase in the relative abundance of Povalibacter, Lysobacter, and GP10 and a decrease in GP17. The proportion of Resin-P and NaHCO3-Po decreased, whereas that of NaOH-Po increased during pepper cultivation. psOTU331 (g_Latescibacteria), psOTU377 (g_Lysobacter), and psOTU461 (g_Pseudoxanthomonas) were the key microorganisms driving the transformation of phosphorus fractionation in the microbial co-occurrence network. Latescibacteria and Lysobacter were closely correlated with the transformation of NaHCO3-Po to NaOH-Po, and Pseudoxanthomonas was significantly correlated with a decrease in Resin-P. These observations highlight the potential of phosphorus recovery products as fertilizer for pepper and provide new insights into the transformation of phosphorus fractions corresponding to the microbiome in soils.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Fanrui Wei
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiang Li
- School of Architecture and Art, Central South University, Changsha 410083, China
| | - Shaoheng Liu
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Liu J, Shen Y, Ding J, Luo W, Zhou H, Cheng H, Wang H, Zhang X, Wang J, Xu P, Cheng Q, Ma S, Chen K. High oil content inhibits humification in food waste composting by affecting microbial community succession and organic matter degradation. BIORESOURCE TECHNOLOGY 2023; 376:128832. [PMID: 36889602 DOI: 10.1016/j.biortech.2023.128832] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Composting is an effective technology to realize resource utilization of food waste in rural China. However, high oil content in food waste limits composting humification. This study investigated the effects of blended plant oil addition at different proportions (0, 10, 20, and 30%) on the humification of food waste composting. Oil addition at 10%-20% enhanced lignocellulose degradation by 16.6%-20.8% and promoted humus formation. In contrast, the high proportion of oil (30%) decreased the pH, increased the electrical conductivity, and reduced the seed germination index to 64.9%. High-throughput sequencing showed that high oil inhibited the growth and reproduction of bacteria (Bacillus, Fodinicurvataceae, and Methylococcaceae) and fungi (Aspergillus), attenuated their interaction, thus, reducing the conversion of organic matter, such as lignocellulose, fat, and total sugar, to humus, consequently leading to negative impacts on composting humification. The results can guide composting parameter optimization and improve effective management of rural food waste.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Wenhai Luo
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Haibin Zhou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hongsheng Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huihui Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xi Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jian Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengxiang Xu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qiongyi Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Kun Chen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
16
|
Li B, Xu D, Feng L, Liu Y, Zhang L. Ecotoxic side-effects of allelochemicals on submerged plant and its associated microfloras effectively relieved by sustained-release microspheres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161888. [PMID: 36731566 DOI: 10.1016/j.scitotenv.2023.161888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Harmful algae bloom caused by water eutrophication is a burning question worldwide. Allelochemicals sustained-release microspheres (ACs-SMs) exhibited remarkable inhibition effect on algae, however, few studies have focused on the ecotoxic side-effects of ACs-SMs on submerged plant and its associated microfloras. Herein the effects of different exposure situations including single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs on morphological indexes, chlorophyll content, lipid peroxidation, enzymatic activity, and chlorophyll fluorescence indexes of submerged plant Vallisneria natans and the richness and diversity of its associated microfloras (epibiotic microbes and sediment microbes) were studied. The results showed that pure ACs (RL-ACs and SH-ACs groups) had negative effects on plant height, mean leaf number and area of V. natans, but promoted the increase of mean leaf length. In addition, pure ACs caused lipid peroxidation, activated the antioxidant defense system, decreased chlorophyll content, and damaged photosynthetic system in leaves. Interestingly, ACs-SMs not only had barely negative effects on above indexes of V. natans, but had certain positive effects at the later experiment stage (days 50-60). Pure ACs and ACs-SMs all reduced the richness and diversity of microfloras in each group, and promoted the increase of relative abundance of dominant bacteria Pseudomonas, leading to a simpler community structure. Significantly, V. natans leaves diminished the effects of pure ACs and ACs-SMs on epibiotic microbes, and the plant rhizosphere was beneficial to the increase of dominant bacteria that promoted plant growth. Thus, sustained-release microspherification technology can effectively relieve the ecotoxic side-effects of pure ACs on submerged plant and its associated microfloras. This study fills the gap on the ecological safety knowledge of ACs-SMs and provides primary data for evaluating the feasibility and commercialization prospects of ACs-SMs as algae inhibitor in aquatic ecosystem.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Lin WF, Guo HQ, Zhu LJ, Yang K, Li HZ, Cui L. Temporal variation of antibiotic resistome and pathogens in food waste during short-term storage. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129261. [PMID: 35739780 DOI: 10.1016/j.jhazmat.2022.129261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The massive food wastes pose a growing health concern for spreading of antibiotic resistance and pathogens due to food spoilage. However, little is known about these microbial hazards during collection, classification, and transportation before eventual treatment. Here, we profiled the temporal variations of antibiotic resistance genes (ARGs), pathogens, bacterial and fungal communities across four typical food wastes (vegetable, fish, meat, and rice) during storage at room temperature in summer (maximum 28-29 °C) of typical southeast city in China. A total of 171 ARGs and 32 mobile genetic elements were detected, and the absolute abundance of ARGs significantly increased by up to 126-fold with the storage time. Additionally, five bacterial pathogens containing virulence factor genes were detected, and Klebsiella pneumoniae was persistently detected throughout the storage time in all food types except rice. Moreover, fungal pathogens (e.g., Aspergillus, Penicillium, and Fusarium) were also frequently detected. Notably, animal food wastes were demonstrated to harbor higher abundance of ARGs and more types of pathogens, indicating a higher level of hazard. Mobile genetic elements and food types were demonstrated to mainly impact ARG profiles and pathogens, respectively. This work provides a comprehensive understanding of the microbial hazards associated with food waste recycling, and will contribute to optimize the food waste management to ensure biosecurity and benefit human health.
Collapse
Affiliation(s)
- Wen-Fang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Qin Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long-Ji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
18
|
He L, Lin Z, Zhu K, Wang Y, He X, Zhou J. Mesophilic condition favors simultaneous partial nitrification and denitrification (SPND) and anammox for carbon and nitrogen removal from anaerobic digestate food waste effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151498. [PMID: 34752875 DOI: 10.1016/j.scitotenv.2021.151498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Three simultaneous partial nitrification and denitrification (SPND) bioreactors were established on ambient (30 °C), mesophilic (40 °C) and thermophilic condition (50 °C) at high dissolved oxygen levels (2-7 mg L-1) to remove nitrogen and carbon from anaerobic digestate food waste effluent (ADFE). The bioreactor performed best under mesophilic condition, with TN and COD removal efficiency of 96.3 ± 0.1% and 91.7 ± 0.1%, respectively. Free ammonia (FA) and free nitrous acid (FNA) alternately ensured selective inhibition of nitrite-oxidizing bacteria (NOB) in long-term operation of SPND systems. Candidatus Brocadia, known as anammox bacteria, was observed unexpectedly in the bioreactors. The analysis of microbial community and metabolic pathways revealed that mesophilic strategy stimulated SPND and anammox process. Mesophilic condition helped autotropic microbes resist the competitive pressure from heterotrophic bacteria, improving the balance between nitrifiers, anammox bacteria and other co-existing heterotrophs. Overall, this study offers new insights into the linkage among temperature, pollutant removals (carbon and nitrogen) and metabolic potential in the SPND bioreactors.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kun Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian 350116, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
19
|
Diversity of a Lactic Acid Bacterial Community during Fermentation of Gajami-Sikhae, a Traditional Korean Fermented Fish, as Determined by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Foods 2022; 11:foods11070909. [PMID: 35406996 PMCID: PMC8997922 DOI: 10.3390/foods11070909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gajami-sikhae is a traditional Korean fermented fish food made by naturally fermenting flatfish (Glyptocephalus stelleri) with other ingredients. This study was the first to investigate the diversity and dynamics of lactic acid bacteria in gajami-sikhae fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 4824 isolates were isolated from the fermented gajami-sikhae. These findings indicated that Latilactobacillus, Lactiplantibacillus, Levilactobacillus, Weissella, and Leuconostoc were the dominant genera during fermentation, while the dominant species were Latilactobacillus sakei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Weissella koreensis, and Leuconostoc mesenteroides. At all temperatures, L. sakei was dominant at the early stage of gajami-sikhae fermentation, and it maintained dominance until the later stage of fermentation at low temperatures (5 °C and 10 °C). However, L. plantarum and L. brevis replaced it at higher temperatures (15 °C and 20 °C). The relative abundance of L. plantarum and L. brevis reached 100% at the later fermentation stage at 20 °C. These results suggest that the optimal fermentation temperatures for gajami-sikhae are low rather than high temperatures. This study could allow for the selection of an adjunct culture to control gajami-sikhae fermentation.
Collapse
|
20
|
Chen Z, Li Y, Ye C, He X, Zhang S. Fate of antibiotics and antibiotic resistance genes during aerobic co-composting of food waste with sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146950. [PMID: 34088024 DOI: 10.1016/j.scitotenv.2021.146950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Aerobic composting is widely used on transforming organic solid waste into proliferating products. However, the removal of antibiotics and antibiotic resistance genes (ARGs) in the process of co-composting of food waste with sewage sludge has been rarely reported to date. Therefore, we investigated a laboratory-scale composting using food waste and sewage sludge as substrates to study changes in antibiotics and ARGs during composting. Varying dose of antibiotics were added to allow the evaluation of changes in antibiotics, the microbial community and ARGs. The results revealed that composting effectively removed fluoroquinolones and macrolides, while showed poor efficiency in removing sulfonamides. Results from the 16S rRNA sequencing revealed that Firmicutes dominated on D0, while Proteobacteria and Actinomycetes dominated on D28, and a high concentration of antibiotics affected the microbial succession. The quantitative PCR demonstrated that the abundance of sul3, sulA, qnrB, qnrS, and ermB was reduced after 28 days composting, while an increase in the abundance of sul1, sul2, qnrD, ermC, and ermF was induced by high concentrations of antibiotics. Redundancy analysis revealed that total organic matter was the most important factor for the variation in the ARGs abundance. Overall, our findings indicated that the aerobic co-composting of food waste with sewage sludge can effectively remove antibiotics and ARGs. Our study sheds a new idea light on the strategy for the removal of antibiotics and ARGs from organic solid waste.
Collapse
Affiliation(s)
- Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xin He
- Hefei Thomas School, Hefei 230000, People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|