1
|
Dou Z, Chen X, Zhu L, Zheng X, Chen X, Xue J, Niwayama S, Ni Y, Xu G. Enhanced stereodivergent evolution of carboxylesterase for efficient kinetic resolution of near-symmetric esters through machine learning. Nat Commun 2024; 15:9057. [PMID: 39428434 PMCID: PMC11491460 DOI: 10.1038/s41467-024-53191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Carboxylesterases serve as potent biocatalysts in the enantioselective synthesis of chiral carboxylic acids and esters. However, naturally occurring carboxylesterases exhibit limited enantioselectivity, particularly toward ethyl 3-cyclohexene-1-carboxylate (CHCE, S1), due to its nearly symmetric structure. While machine learning effectively expedites directed evolution, the lack of models for predicting the enantioselectivity for carboxylesterases has hindered progress, primarily due to challenges in obtaining high-quality training datasets. In this study, we devise a high-throughput method by coupling alcohol dehydrogenase to determine the apparent enantioselectivity of the carboxylesterase AcEst1 from Acinetobacter sp. JNU9335, generating a high-quality dataset. Leveraging seven features derived from biochemical considerations, we quantitively describe the steric, hydrophobic, hydrophilic, electrostatic, hydrogen bonding, and π-π interaction effects of residues within AcEst1. A robust gradient boosting regression tree model is trained to facilitate stereodivergent evolution, resulting in the enhanced enantioselectivity of AcEst1 toward S1. Through this approach, we successfully obtain two stereocomplementary variants, DR3 and DS6, demonstrating significantly increased and reversed enantioselectivity. Notably, DR3 and DS6 exhibit utility in the enantioselective hydrolysis of various symmetric esters. Comprehensive kinetic parameter analysis, molecular dynamics simulations, and QM/MM calculations offer insights into the kinetic and thermodynamic features underlying the manipulated enantioselectivity of DR3 and DS6.
Collapse
Affiliation(s)
- Zhe Dou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmacy, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Xuanzao Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Ledong Zhu
- Environmental Research Institute, Shandong University, Jimo, 266237, Qingdao, Shandong, P. R. China
| | - Xiangyu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Xiaoyu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Jiayu Xue
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Satomi Niwayama
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
2
|
Li X, Yu H, Liu S, Ma B, Wu X, Zheng X, Xu Y. Discovery, characterization and mechanism of a Microbacterium esterase for key d-biotin chiral intermediate synthesis. BIORESOUR BIOPROCESS 2024; 11:59. [PMID: 38879848 PMCID: PMC11180644 DOI: 10.1186/s40643-024-00776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Esterases are crucial biocatalysts in chiral compound synthesis. Herein, a novel esterase EstSIT01 belonging to family V was identified from Microbacterium chocolatum SIT101 through genome mining and phylogenetic analysis. EstSIT01 demonstrated remarkable efficiency in asymmetrically hydrolyzing meso-dimethyl ester [Dimethyl cis-1,3-Dibenzyl-2-imidazolidine-4,5-dicarboxyate], producing over 99% yield and 99% enantiomeric excess (e.e.) for (4S, 5R)-monomethyl ester, a crucial chiral intermediate during the synthesis of d-biotin. Notably, the recombinant E. coli expressing EstSIT01 exhibited over 40-fold higher activity than that of the wild strain. EstSIT01 displays a preference for short-chain p-NP esters. The optimal temperature and pH were 45 °C and 10.0, with Km and kcat values of 0.147 mmol/L and 5.808 s- 1, respectively. Molecular docking and MD simulations suggest that the high stereoselectivity for meso-diester may attribute to the narrow entrance tunnel and unique binding pocket structure. Collectively, EstSIT01 holds great potential for preparing chiral carboxylic acids and esters.
Collapse
Affiliation(s)
- Xinjia Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd, Linyi, 276400, China
| | - Baodi Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaomei Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xuesong Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Yi Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
3
|
Huang B, Yang K, Amanze C, Yan Z, Zhou H, Liu X, Qiu G, Zeng W. Sequence and structure-guided discovery of a novel NADH-dependent 7β-hydroxysteroid dehydrogenase for efficient biosynthesis of ursodeoxycholic acid. Bioorg Chem 2023; 131:106340. [PMID: 36586301 DOI: 10.1016/j.bioorg.2022.106340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
7β-Hydroxysteroid dehydrogenases (7β-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7β-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7β-HSDH (Cle7β-HSDH). The Cle7β-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7β-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.
Collapse
Affiliation(s)
- Bin Huang
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Zhen Yan
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Hunan 410083, China.
| |
Collapse
|
4
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. A new hyper-thermostable carboxylesterase from Anoxybacillus geothermalis D9. Int J Biol Macromol 2022; 222:2486-2497. [DOI: 10.1016/j.ijbiomac.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
5
|
Nazarian Z, Arab SS. Discovery of carboxylesterases via metagenomics: Putative enzymes that contribute to chemical kinetic resolution. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Liang X, Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Highly efficient biosynthesis of spermidine from L-homoserine and putrescine using an engineered Escherichia coli with NADPH self-sufficient system. Appl Microbiol Biotechnol 2022; 106:5479-5493. [PMID: 35931895 DOI: 10.1007/s00253-022-12110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Spermidine is an important polyamine that can be used for the synthesis of various bioactive compounds in the food and pharmaceutical fields. In this study, a novel efficient whole-cell biocatalytic method with an NADPH self-sufficient cycle for spermidine biosynthesis was designed and constructed by co-expressing homoserine dehydrogenase (HSD), carboxyspermidine dehydrogenase (CASDH), and carboxyspermidine decarboxylase (CASDC). First, the enzyme-substrate coupled cofactor regeneration system from co-expression of NADP+-dependent ScHSD and NADPH-dependent AfCASDH exactly provides an efficient method for cofactor cycling. Second, we identified and characterized a putative CASDC with high decarboxylase activity from Butyrivibrio crossotus DSM 2876; it showed an optimum temperature of 35 °C and an optimum pH of 7.0, which make it better suited for the designed synthetic route. Subsequently, the protein expression level of each enzyme was optimized through the variation of the gene copy number, and a whole-cell catalyst with high catalytic efficiency was constructed successfully. Finally, a yield of 28.6 mM of spermidine was produced in a 1-L scale of E. coli whole-cell catalytic system with a 95.3% molar conversion rate after optimization of temperature, the ratio of catalyst-to-substrate, and the amount of NADP+, and a productivity of 0.17 g·L-1·h-1 was achieved. In summary, this novel pathway of constructing a whole-cell catalytic system from L-homoserine and putrescine could provide a green alternative method for the efficient synthesis of spermidine. KEY POINTS: • A novel pathway for spermidine biosynthesis was developed in Escherichia coli. • The enzyme-substrate coupled system provides an NADPH self-sufficient cycle. • Spermidine with 28.6 mM was obtained using an optimized whole-cell system.
Collapse
Affiliation(s)
- Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Dou Z, Jia P, Chen X, Wu Z, Xu G, Ni Y. Structural and mechanistic insights into enantioselectivity toward near-symmetric esters of a novel carboxylesterase RoCE. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel carboxylesterase RoCE was identified with relatively high enantioselectivity toward “hard-to-be-discriminated” oxyheterocyclic esters. Molecular basis of enantioselectivity was elucidated and applied in increasing enantioselectivity of RoCE.
Collapse
Affiliation(s)
- Zhe Dou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Peng Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zheng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
8
|
Dou Z, Chen X, Niwayama S, Xu G, Ni Y. Kinetic Resolution of Nearly Symmetric 3-Cyclohexene-1-carboxylate Esters Using a Bacterial Carboxylesterase Identified by Genome Mining. Org Lett 2021; 23:3043-3047. [PMID: 33797267 DOI: 10.1021/acs.orglett.1c00714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new bacterial carboxylesterase (CarEst3) was identified by genome mining and found to efficiently hydrolyze racemic methyl 3-cyclohexene-1-carboxylate (rac-CHCM) with a nearly symmetric structure for the synthesis of (S)-CHCM. CarEst3 displayed a high substrate tolerance and a stable catalytic performance. The enantioselective hydrolysis of 4.0 M (560 g·L-1) rac-CHCM was accomplished, yielding (S)-CHCM with a >99% ee, a substrate to catalyst ratio of 1400 g·g-1, and a space-time yield of 538 g·L-1·d-1.
Collapse
Affiliation(s)
- Zhe Dou
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xuanzao Chen
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Satomi Niwayama
- Graduate School of Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Guochao Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Suresh A, Shravan Ramgopal D, Panchamoorthy Gopinath K, Arun J, SundarRajan P, Bhatnagar A. Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes. BIORESOURCE TECHNOLOGY 2021; 323:124558. [PMID: 33383359 DOI: 10.1016/j.biortech.2020.124558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Thermostable enzymes are a field of growing interest in bioremediation, pharmaceuticals, food industry etc., due to their ability to catalyze bio reactions at high temperatures. This review aims to provide an overview on extremophiles with a special focus on thermophiles and enzymes produced from extremophilic bacteria. Novel thermostable catalysts, used in producing commercially important chemicals, are discussed in this review. Various classes of enzymes produced by microbes, synthesis of thermozymes and comparison with enzymes produced at optimal conditions are critically discussed. A detailed discussion on immobilized enzymes in comparisons with free enzymes, produced by extremozymes, is included. Different parameters which affect enzyme production are also discussed. The current industrial trends along with the future of biocatalysts in the production of chemicals using efficient methods are also discussed.
Collapse
Affiliation(s)
- Aravind Suresh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dhakshin Shravan Ramgopal
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Panneerselvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|