1
|
Manaenkov O, Nikoshvili L, Bykov A, Kislitsa O, Grigoriev M, Sulman M, Matveeva V, Kiwi-Minsker L. An Overview of Heterogeneous Catalysts Based on Hypercrosslinked Polystyrene for the Synthesis and Transformation of Platform Chemicals Derived from Biomass. Molecules 2023; 28:8126. [PMID: 38138614 PMCID: PMC10745566 DOI: 10.3390/molecules28248126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of the transformations of platform chemicals are catalytic processes, which should meet the requirements of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity (including meso- and macropores along with micropores), which is important both for the formation of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of disaccharides, and some other reactions that might be useful for large-scale industrial processes that aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and multiple perspectives are discussed.
Collapse
Affiliation(s)
- Oleg Manaenkov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Linda Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Alexey Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Olga Kislitsa
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Maxim Grigoriev
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Mikhail Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Valentina Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Lioubov Kiwi-Minsker
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
- Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Yang X, Li X, Zhao J, Liang J, Zhu J. Production of Sorbitol via Hydrogenation of Glucose over Ruthenium Coordinated with Amino Styrene-co-maleic Anhydride Polymer Encapsulated on Activated Carbon (Ru/ASMA@AC) Catalyst. Molecules 2023; 28:4830. [PMID: 37375385 DOI: 10.3390/molecules28124830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Sorbitol, a product primarily derived from glucose hydrogenation, has extensive applications in the pharmaceutical, chemical and other industries. Amino styrene-co-maleic anhydride polymer encapsulated on activated carbon (Ru/ASMA@AC) catalysts were developed for efficient glucose hydrogenation and were prepared and confined Ru by coordination with styrene-co-maleic anhydride polymer (ASMA). Through single-factor experiments, optimal conditions were determined to be 2.5 wt.% ruthenium loading and a catalyst usage of 1.5 g, 20% glucose solution at 130 °C, reaction pressure of 4.0 MPa, and a stirring speed of 600 rpm for 3 h. These conditions achieved a high glucose conversion rate of 99.68% and a sorbitol selectivity of 93.04%. Reaction kinetics testing proved that the hydrogenation of glucose catalyzed by Ru/ASMA@AC was a first-order reaction, with a reaction activation energy of 73.04 kJ/mol. Furthermore, the catalytic performance of the Ru/ASMA@AC and Ru/AC catalysts for glucose hydrogenation were compared and characterized by various detection methods. The Ru/ASMA@AC catalyst exhibited excellent stability after five cycles, whereas the traditional Ru/AC catalyst suffered from a 10% decrease in sorbitol yield after three cycles. These results suggest that the Ru/ASMA@AC catalyst is a more promising candidate for high-concentration glucose hydrogenation due to its high catalytic performance and superior stability.
Collapse
Affiliation(s)
- Xiaorui Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaotong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinhua Liang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianliang Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Kamble PA, Vinod C, Rathod VK, Kantam ML. Hydrogenation of levulinic acid to gamma-valerolactone over nickel supported organoclay catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Hombach L, Simitsis N, Vossen JT, Vorholt AJ, Beine AK. Solidified and Immobilized Heteropolyacids for the Valorization of Lignocellulose. ChemCatChem 2022. [DOI: 10.1002/cctc.202101838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lea Hombach
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Solid Molecular Catalysts GERMANY
| | - Natalia Simitsis
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | - Jeroen Thomas Vossen
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Molecular Catalysis GERMANY
| | - Andreas J. Vorholt
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Molecular Catalysis GERMANY
| | - Anna Katharina Beine
- Max-Planck-Institut fur chemische Energiekonversion solid molecular catalysts Stiftstr. 36-38 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
5
|
Dutta S, Bhat NS. Chemocatalytic value addition of glucose without carbon-carbon bond cleavage/formation reactions: an overview. RSC Adv 2022; 12:4891-4912. [PMID: 35425469 PMCID: PMC8981328 DOI: 10.1039/d1ra09196d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C6 products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C6 molecules from glucose.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| | - Navya Subray Bhat
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| |
Collapse
|
6
|
Deng T, He X, Liu H. Insights into the Active Acid Sites for Isosorbide Synthesis from Renewable Sorbitol and Cellulose on Solid Acid Catalysts. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Impact of Design on the Activity of ZrO2 Catalysts in Cellulose Hydrolysis-Dehydration to Glucose and 5-Hydroxymethylfurfural. Catalysts 2021. [DOI: 10.3390/catal11111359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The one-pot hydrolysis-dehydration of activated microcrystalline cellulose was studied in pure hydrothermal water at 453 K over ZrO2 catalysts produced by thermodegradation, microwave treatment, mechanical activation, and sol–gel methods and spent without any co-catalyst. ZrO2 prepared by microwave treatment was more active compared to ones derived by other methods. The catalyst calcination temperature also impacted reactivity. The cellulose conversion increased simultaneously with acidity and SBET, which in turn were set by the preparation method and calcination temperature. Phase composition did not affect the activity. Yields of glucose and 5-HMF reaching 18 and 15%, respectively, were over the most promising ZrO2 prepared by microwave treatment at 593 K. To our knowledge, this ZrO2 sample provided the highest activity in terms of TOF values (15.1 mmol g−1 h−1) compared to the pure ZrO2 systems reported elsewhere. High stability of ZrO2 derived by microwave irradiation was shown in five reaction runs.
Collapse
|