1
|
Verma P, Sirotiya V, Rathore R, Kumar A, Rai A, Soni U, Khalid M, Yadav KK, Vinayak V. A comprehensive review on microalgal chromium detoxification in tannery wastewater: Paving the way for biobased products. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2024; 190:240-255. [DOI: 10.1016/j.psep.2024.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Dhanker R, Saxena A, Tiwari A, Kumar Singh P, Kumar Patel A, Dahms HU, Hwang JS, González-Meza GM, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. BIORESOURCE TECHNOLOGY 2024; 391:129905. [PMID: 37923226 DOI: 10.1016/j.biortech.2023.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Diatoms, with their complex cellular architecture, have been recognized as a source of limitless potential. These microbes are common in freshwater and marine habitats and are essential for primary production and carbon sequestration. They are excellent at utilizing nutrients, providing a sustainable method of treating wastewater while also producing biomass rich in beneficial substances like vitamins, carotenoids, polysaccharides, lipids, omega-3 fatty acids, pigments, and novel bioactive molecules. Additionally, they are highly efficient organisms that can be employed to monitor the environment by acting as trustworthy indicators of water quality. This comprehensive review explores the multifaceted applications of diatoms in a variety of fields, such as bioremediation, aquaculture, value-added products, and other applications. The review set out on a path towards greener, more sustainable methods amicable to both industry and the environment by utilizing theenormous diverse biotechnological potentials of diatoms.
Collapse
Affiliation(s)
- Raunak Dhanker
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Pankaj Kumar Singh
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804, Taiwan, ROC
| | - Jiang-Shiou Hwang
- National Taiwan Ocean University, Institute of Marine Biology, Keelung 20224, Taiwan, ROC
| | - Georgia Maria González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Kashyap M, Chakraborty S, Kumari A, Rai A, Varjani S, Vinayak V. Strategies and challenges to enhance commercial viability of algal biorefineries for biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129551. [PMID: 37506948 DOI: 10.1016/j.biortech.2023.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The rise in energy consumption would quadruple in the coming century and the, existing energy resources might be insufficient to meet the demand of the growing population. An alternative and sustainable energy resource is therefore needed to address the fossil fuel deficiency. The utility of microalgae strains in the aspect of biorefinery has been in research for quite some time. Algal biorefinery is an alternate way of renewable energy however even after decades of research it still suffers from commercialization bottlenecks. The current manuscript reviews the scenarios where the innovation needs an ignition for its commercialization. This review discusses the prospects of up-scale cultivation, and harvesting algal biomass for biorefineries. It narrates algal biorefinery hurdles that can be solved using integrated technology approach, life cycle assessment and applications of nanotechnology. The review also sheds light upon the ties of algal biorefineries with its economic viability.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anamika Kumari
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anshuman Rai
- Department of Biotechnology, School of Engineering, Maharishi Markandeshwar University, Ambala, Haryana 133203, India; State Forensic Science Laboratory, Haryana, Madhuban 132037, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
4
|
Khan MJ, Ahirwar A, Sirotiya V, Rai A, Varjani S, Vinayak V. Nanoengineering TiO 2 for evaluating performance in dye sensitized solar cells with natural dyes. RSC Adv 2023; 13:22630-22638. [PMID: 37501775 PMCID: PMC10369046 DOI: 10.1039/d3ra02927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The current study employs nanoengineering diatom and TiO2 NPs to form diatom-Si-TiO2 nanoengineered structures to fabricate a dye sensitized solar cell (DSSC) (DsTnas-DSSC). This was characterized and spin coated on a Fluorine-doped Tin Oxide (FTO) anode plate. The counter cathode was prepared by spin coating graphene oxide on a FTO glass plate and using Lugol's iodine as an electrolyte. The power density of DsTnas-DSSC was estimated with different natural dyes in comparison to conventional photosensitive ruthenium dye. It was found that the natural dyes extracted from plants and microalgae show significant power efficiencies in DSSC. The percentage efficiency of maximum power densities (PDmax) of DsTnas-DSSC obtained with photosensitive dyes were 9.4% with synthetic ruthenium dye (control) and 7.19% > 4.08% > 0.72% > 0.58% > 0.061% from natural dyes found in Haematococcus pluvialis (astaxanthin) > Syzygium cumini (anthocyanin) > Rosa indica (anthocyanin) > Hibiscus rosa-sinensis (anthocyanin) > Beta vulgaris (betalains), respectively. Among all the natural dyes used, the PDmax for the control ruthenium dye was 6.164 mW m-2 followed by the highest in astaxanthin natural dye from Haematococcus pluvialis (5.872 mW m-2). Overall, the use of natural dye DsTnas-DSSC makes the fuel cell low cost and an alternative to conventional expensive, metal and synthetic dyes.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Maharishi Markendeshwar University Ambala Haryana 133203 India
- State Forensic Science Laboratory Haryana Madhuban 132037 India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong Tat Chee Avenue Kowloon 999077 Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies Dehradun-248 007 Uttarakhand India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University Sagar MP 470003 India
| |
Collapse
|
5
|
Wang F, Li Y, Yang R, Zhang N, Li S, Zhu Z. Effects of sodium selenite on the growth, biochemical composition and selenium biotransformation of the filamentous microalga Tribonema minus. BIORESOURCE TECHNOLOGY 2023:129313. [PMID: 37302765 DOI: 10.1016/j.biortech.2023.129313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.
Collapse
Affiliation(s)
- Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yuanhong Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Rundong Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Na Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China.
| |
Collapse
|
6
|
Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Mar Drugs 2023; 21:md21030176. [PMID: 36976225 PMCID: PMC10056084 DOI: 10.3390/md21030176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Astaxanthin (3,3-dihydroxy-β, β-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.
Collapse
|
7
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Rai A, Sirotiya V, Mourya M, Khan MJ, Ahirwar A, Sharma AK, Kawatra R, Marchand J, Schoefs B, Varjani S, Vinayak V. Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. CHEMOSPHERE 2022; 305:135371. [PMID: 35724717 DOI: 10.1016/j.chemosphere.2022.135371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.
Collapse
Affiliation(s)
- Anshuman Rai
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anil K Sharma
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Rajeev Kawatra
- Forensic Science Laboratory, Haryana, Madhuban, Karnal, 132037, India
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
9
|
Xu M, Pan L, Zhou Z, Han Y. Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers. Carbohydr Polym 2022; 291:119519. [DOI: 10.1016/j.carbpol.2022.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
|
10
|
Phylogeny and Fatty Acid Profiles of New Pinnularia (Bacillariophyta) Species from Soils of Vietnam. Cells 2022; 11:cells11152446. [PMID: 35954290 PMCID: PMC9368540 DOI: 10.3390/cells11152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
We studied the morphology, ultrastructure, and phylogeny of eight soil diatom strains assigned to the Pinnularia genus. Six of these strains, identified by us as new species, are described for the first time. We provide a comprehensive comparison with related species and include ecological data. Molecular phylogeny reconstruction using 18S rDNA and rbcL affiliates the new strains with different subclades within Pinnularia, including ‘borealis’, ‘grunowii’ and ‘stomatophora’. We also studied the fatty acid profiles in connection with the emerging biotechnological value of diatoms as a source of lipids. Stearic (36.0–64.4%), palmitic (20.1–30.4%), and palmitoleic (up to 20.8%) acids were the dominant fatty acids in the algae cultured on Waris-H + Si medium. High yields of saturated and monounsaturated fatty acids position the novel Pinnularia strains as a promising feedstock for biofuel production.
Collapse
|
11
|
Khan MJ, Gordon R, Varjani S, Vinayak V. Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153667. [PMID: 35131253 DOI: 10.1016/j.scitotenv.2022.153667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 μgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive Panacea, FL 32346, USA; C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India.
| | - Vandana Vinayak
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
12
|
Pocha CKR, Chia WY, Chew KW, Munawaroh HSH, Show PL. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Aye Myint A, Hariyanto P, Irshad M, Ruqian C, Wulandari S, Eui Hong M, Jun Sim S, Kim J. Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. BIORESOURCE TECHNOLOGY 2022; 346:126616. [PMID: 34954361 DOI: 10.1016/j.biortech.2021.126616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A novel integrated extraction technique for high recovery of natural astaxanthin from wet encysted Haematococcus pluvialis (H. pluvialis) is demonstrated. The technique can be used to effectively disrupt the cell wall and perform extraction in a one-pot system without a high-energy, cost intensive pre-drying step. The most suitable green solvent was researched in terms of high extraction yield and astaxanthin recovery. Moreover, an optimized condition for the selected green solvents was determined by varying process parameters, viz., the ball milling speed (100-300 rpm) and time (5-30 min). A high recovery of astaxanthin directly from wet H. pluvialis (30.6 mg/g based on its dry mass) and a high extraction yield (58.2 wt%) were achieved using ethyl acetate at 200 rpm after 30 min. Therefore, compared to its counterparts, the biphasic solvent system plays a key role in achieving high extraction yield and astaxanthin recovery from wet H. pluvialis.
Collapse
Affiliation(s)
- Aye Aye Myint
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea; School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Patrick Hariyanto
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Muhammad Irshad
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Cao Ruqian
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Sabrinna Wulandari
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Min Eui Hong
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jaehoon Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea; School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea; SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea.
| |
Collapse
|
14
|
Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. CHEMOSPHERE 2022; 288:132589. [PMID: 34678344 DOI: 10.1016/j.chemosphere.2021.132589] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Nikhil Singh
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Felix Bast
- Department of Botany, Central University of Punjab, Ghudda-VPO, Bathinda, 151401, Punjab, 151001, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - J Rajesh Banu
- Department of Life Science, Central University of Tamilnadu, Thiruvar, 610005, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
15
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
16
|
Khan MJ, Das S, Vinayak V, Pant D, Ghangrekar MM. Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. CHEMOSPHERE 2021; 291:132841. [PMID: 34767852 DOI: 10.1016/j.chemosphere.2021.132841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/18/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Microbial fuel cell (MFC) with live diatoms (Nitzschia palea) displacing bacteria in the anodic chamber generated electrical potential. Unlike other microalgae, diatoms fix 25% of atmospheric CO2, thus releasing O2. They perform photolysis of water by photosynthesis in the plastid during light photoperiod and cellular respiration in the mitochondria during dark, producing electrons and protons, respectively. The electrogenic property of diatom was explored and evaluated by comparing the potential changes with reference fuel cell without diatoms and that operated with diatoms in the anodic chamber. Such photosynthetic diatom microbial fuel cell (PDMFC) employed f/2 media rich in nitrates, phosphates, metasilicates, trace metals and vitamins as the anolyte and potassium permanganate as catholyte enhanced the output voltage by 3rd day. The maximum power density for PDMFC was 12.62 mWm-2 and coulombic efficiency of 22.95%. Besides this, the fixed diatom cells at anode showed about 64.28% increase in lipid production on 15th day compared to that on 1st day along with the increment in formation of complex fatty acid methyl esters and carotenoids during its operation. Hence, diatoms can be envisaged to substitute bacteria in the anodic chamber of MFC to simultaneously produce bioelectricity and other valuable compounds. Further their silica nanoporous architecture serve as good absorbents for heavy metal removal found in many wastewaters.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India.
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
17
|
Khan MJ, Ahirwar A, Schoefs B, Pugazhendhi A, Varjani S, Rajendran K, Bhatia SK, Saratale GD, Saratale RG, Vinayak V. Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. ENVIRONMENTAL RESEARCH 2021; 201:111550. [PMID: 34224710 DOI: 10.1016/j.envres.2021.111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/16/2023]
Abstract
Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Arivalagan Pugazhendhi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
18
|
Vinayak V, Khan MJ, Jha AN, Harish. Photosystem I P700 chlorophyll a apoprotein A1 as PCR marker to identify diatoms and their associated lineage. J Eukaryot Microbiol 2021; 68:e12866. [PMID: 34273209 DOI: 10.1111/jeu.12866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The morphological characteristics of diatoms are useful for studying their taxonomy. However, the distinction between closely related diatom taxa can be very difficult, especially when the morphological characters are modified by environmental constraints. In the present study, 13 fresh water diatoms were identified morphologically and cultured under axenic conditions. To check this, PCR primers specific for multilocus genes were designed to amplify and screen 13 fresh water diatom monocultures. Multilocus PCR primers (DRR3, scfcpA, Lhcf11, SIT1, SIT3, SIT4, LOC101218388, COI-5P, rbcL, rbcL-3P, LSU D2/D3, UPA, psaA, and 18S rRNA) were tested. It was found that psaA gene, a plant pigment chlorophyll-based PCR marker, amplified in all the diatoms. Out of 13 diatom amplicons, only two fresh water diatoms DNA were sequenced. This included Cyclotella meneghiniana and Sellaphora pupula. The Sanger sequencing results thus established that morphologically identified diatom, Sellaphora pupula, exhibited close phylogeny to Sellaphora whereas fresh water Cyclotella meneghiniana has close lineage to marine diatom Thallosiosira.
Collapse
Affiliation(s)
- Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Harish
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
19
|
Vinayak V, Khan MJ, Varjani S, Saratale GD, Saratale RG, Bhatia SK. Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol 2021; 338:5-19. [PMID: 34245783 DOI: 10.1016/j.jbiotec.2021.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
With the advent of global industrialisation and adaptation of smart life there is rise in anthropogenic pollution especially in water. Remediation of the pollutants (such as metals, and dyes) present in industrial effluents is possible via microbes and algae present in the environment. Microbes are used in a microbial fuel cell (MFC) for remediation of various organic and inorganic pollutants. However, for industrial scale application coupling the MFCs with photocatalytic and photoelectric fuel cell has a potential in improving the output of power. It can also be used for remediation of pollutants more expeditiously, conserving fossil fuels, cleaning environment, hence making the coupled hybrid fuel cell to run economically. Furthermore, such MFC inbuilt with algae in living or powder form give additional value addition products like biofuel, polysaccharides, biopolymers, and polyhydroxy alkanoates etc. This review provides bird's eye view on the removal of environmental pollutants by different biological sources like bacteria and algae. The article is focussed on diatoms as potential algae since they are rich source of crude oil and high value added products in a hybrid photocatalytic MFC. It also covers bottle necks, challenges and future in this field of research.
Collapse
Affiliation(s)
- Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
20
|
Saxena A, Marella TK, Singh PK, Tiwari A. Indoor mass cultivation of marine diatoms for biodiesel production using induction plasma synthesized nanosilica. BIORESOURCE TECHNOLOGY 2021; 332:125098. [PMID: 33845321 DOI: 10.1016/j.biortech.2021.125098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In this work, two benthic marine diatoms Chaetoceros sp. and Thalassiosira sp. were grown in modified f/2 medium in which normal silica was replaced with inductively coupled plasma (ICP) nanosilica for indoor mass cultivation and its impact on growth, lipid content, lipid quality and metabolite production were monitored. Results indicate thatunder mass cultivation using ICP nano silica medium, Thalassiosirasp. reached 3.6 and Chaetoceros sp. reached 3.2-fold higher cell density compared to normal Si medium. The primary metabolite production and total lipid content was higher in Chaetoceros sp. (44.33 ± 2.51% DCW) compared to Thalassiosira sp. (29.66 ± 1.52% DCW). In mass cultivation, ICP synthesized nanosilica powder was effective in enhancing the cell density, production of metabolites, pigments, and lipids in the marine diatoms studied. This is the first report on the use of ICP nanosilica in carrying out indoor mass cultivation of marine diatom isolates as potential biodiesel and biomolecule feedstocks.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), Tennodai, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India.
| |
Collapse
|
21
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|