1
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Li X, Chen T, Ren Q, Lu J, Cao S, Liu C, Li Y. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172111. [PMID: 38565354 DOI: 10.1016/j.scitotenv.2024.172111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Phages can influence the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) through transduction, but their profiles and effects on the transmission of ARGs are unclear, especially in complex swine sludge. In this study, we investigated the characterization of phage and ARG profiles in sludge generated from anoxic/oxic (A/O) wastewater treatment processes on swine farms using metagenomes and viromes. The results demonstrated that 205-221 subtypes of ARGs could be identified in swine sludge, among which sul1, tet(M), and floR were the dominant ARGs, indicating that sludge is an important reservoir of ARGs, especially in sludge (S) tanks. The greater abundance of mobile genetic elements (MGEs) in the S tank could significantly contribute to the greater abundance of ARGs there compared to the anoxic (A) and oxic (O) tanks (P < 0.05). However, when we compared the abundances of ARGs and MGEs in the A and O tanks, we observed opposite significant differences (P < 0.05), suggesting that MGEs are not the only factor influencing the abundance of ARGs. The high proportion of lysogenic phages in sludge from the S tank can also have a major impact on the ARG profile. Siphoviridae, Myoviridae, and Podoviridae were the dominant phage families in sludge, and a network diagram of bacteria-ARG-phages revealed that dominant phages and bacteria acted simultaneously as potential hosts for ARGs, which may have led to phage-mediated HGT of ARGs. Therefore, the risk of phage-mediated HGT of ARGs cannot be overlooked.
Collapse
Affiliation(s)
- Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qinghai Ren
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Shengliang Cao
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
3
|
Yu X, Lv Y, Wang Q, Wang W, Wang Z, Wu N, Liu X, Wang X, Xu X. Deciphering and predicting changes in antibiotic resistance genes during pig manure aerobic composting via machine learning model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33610-33622. [PMID: 38689043 DOI: 10.1007/s11356-024-33087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Livestock manure is one of the most important pools of antibiotic resistance genes (ARGs) in the environment. Aerobic composting can effectively reduce the spread of antibiotic resistance risk in livestock manure. Understanding the effect of aerobic composting process parameters on manure-sourced ARGs is important to control their spreading risk. In this study, the effects of process parameters on ARGs during aerobic composting of pig manure were explored through data mining based on 191 valid data collected from literature. Machine learning (ML) models (XGBoost and Random Forest) were utilized to predict the rate of ARGs changes during pig manure composting. The model evaluation index of the XGBoost model (R2 = 0.651) was higher than that of the Random Forest (R2 = 0.490), indicating that XGBoost had better prediction performance. Feature importance was further calculated for the XGBoost model, and the XGBoost black box model was interpreted by Shapley additive explanations analysis. Results indicated that the influencing factors on the ARGs variation in pig manure were sequentially divided into thermophilic period, total composting period, composting real time, and thermophilic stage average temperature. The findings gave an insight into the application of ML models to predict and decipher the ARG changes during manure composting and provided suggestions for better composting manipulation and optimization of process parameters.
Collapse
Affiliation(s)
- Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yang Lv
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Wenhao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiqiang Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China.
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| |
Collapse
|
4
|
Wen X, Chen M, Ma B, Xu J, Zhu T, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:76-85. [PMID: 38290350 DOI: 10.1016/j.wasman.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wang Y, Wang Y, Shao T, Wang R, Dong Z, Xing B. Antibiotics and microplastics in manure and surrounding soil of farms in the Loess Plateau: Occurrence and correlation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133434. [PMID: 38198861 DOI: 10.1016/j.jhazmat.2024.133434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The wide use of animal manure in farmland operations is a source of soil nutrients. However, the return of manure affected antibiotics and microplastics in the soil, thus the potential ecological risks cannot be overlooked. This study investigated the distribution of different antibiotics and microplastics and their correlation. It was found that multiple classes of veterinary antibiotics and microplastics could be detected simultaneously in most manure and soil. In manure, the average concentration of tetracycline antibiotics was higher than fluoroquinolones and sulfonamides. A much lower concentration of antibiotics was found in the soil samples relative to manure. The abundance of microplastics ranged from 21,333 to 88,333 n/kg in manure, and the average abundance was 50,583 ± 24,318 n/kg. The average abundance was 3056 ± 1746 n/kg in the soil. It confirmed that applying organic fertilizer to agricultural soil and the application of plastic mulch in farmlands introduced microplastics. Moreover, microplastics were found to be significantly correlated with antibiotics (r = 0.698, p < 0.001). The correlation between microplastics and antibiotics in soil was significantly weaker than that in manure. Farms could be the hotspot for the co-spread of microplastics and antibiotics. These findings highlighted the co-occurrence of antibiotics and microplastics in agricultural environments.
Collapse
Affiliation(s)
- Yuting Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; Ordos Road Maintenance Service Center, Ordos Transportation Bureau, Ordos 017200, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Tianjie Shao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ruiyuan Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhibao Dong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
6
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Wang H, Lin S, Zhang H, Guo D, Dan L, Zheng X. Batch-fed composting of food waste: Microbial diversity characterization and removal of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023:129433. [PMID: 37399965 DOI: 10.1016/j.biortech.2023.129433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The aim of this work was to study the impact of batch-fed strategies on bacterial communities and ARGs in compost. The findings demonstrate that batch-feeding helped maintain high temperatures in the compost pile for an extended period (above 50 °C for 18 days), which in turn facilitated water dissipation. High-throughput sequencing showed that Firmicutes played a significant role in batch-fed composting (BFC). They had a high relative abundance at the beginning (98.64%) and end (45.71%) of compost. Additionally, BFC showed promising results in removing ARGs, with reductions of 3.04-1.09 log copies/g for Aminoglycoside and 2.26-2.44 log copies/g for β_Lactamase. This study provides a comprehensive survey of BFC and demonstrates its potential for eliminating resistance contamination in compost.
Collapse
Affiliation(s)
- Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Dong Guo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Liu Dan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Xiaowei Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China.
| |
Collapse
|
8
|
Fang H, Tian L, Ye N, Zhang S. Alizarin enhancement of the abundance of ARGs and impacts on the microbial community in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2250-2264. [PMID: 37186628 PMCID: wst_2023_138 DOI: 10.2166/wst.2023.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Alizarin, a dyestuff from herbs, showed effective inhibition effects on pathogenic bacteria, and thus has been frequently used in the world as the main alternative to antibiotics in the treatment of inflammations and pathogen infections. However, it was unclear whether alizarin played key a role in antibiotic-induced antibiotic-resistant gene (ARG) alterations and impacted microbial community shifts in aquatic environments. In this study, the effects of alizarin or co-exposure of alizarin with antibiotics on the fate of ARGs, class 1 integron-integrase gene (intI1), and microbial populations in lake water were investigated, and the potential hosts for ARGs were analyzed. The results showed that the absolute abundance of 16s rRNA gene, ARGs (tetA, tetC, and qnrS), and intI1 were increased during the treatment of alizarin. The combination of alizarin and antibiotics was superior to alizarin in its ability to promote population growth of bacteria and induce ARGs. Additionally, alizarin more significantly altered the community composition of microorganisms in water, which resulted in differences in bacterial communities and functions.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - Lingyun Tian
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - Nan Ye
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China E-mail:
| |
Collapse
|
9
|
Ma S, Liu H, Hou J, Zhang J. External static magnetic field potentiates the reduction of antibiotic resistance genes during swine manure composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130882. [PMID: 36738618 DOI: 10.1016/j.jhazmat.2023.130882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Livestock and poultry manure are repositories of antibiotic resistance genes (ARGs). Accumulating evidence suggests that composting is an important way to effectively attenuate ARGs, but how to reinforce the reduction in ARGs during composting needs to be further investigated. This study explored the influence of an external static magnetic field on ARG mitigation enhancement during swine manure composting. The results showed that a total of 12 high-risk ARGs were identified. A relatively high magnetic field intensity (14.81 mT) was more effective in reducing the abundance of high-risk ARGs, and the removal rate was 20.66-100 %. It also reduced the abundance of 27.14 % of integrons, 79.44 % of insertion sequences, and 8.78 % of plasmids. Partial least squares path modeling showed that a relatively high magnetic field intensity treatment promoted the reduction in ermB by reducing the abundance of Phascolarctobacterium, Streptococcus, and insertion sequences. It also mitigated sul1 expression by reducing the abundance of Acinetobacter and integrons, and it mitigated tetM expression by decreasing Lactobacillus, Streptococcus, insertion sequences, and plasmids. These findings demonstrate that an external static magnetic field is an effective method for intensifying the reduction in ARGs, providing a feasible reference for controlling the potential ARG risk of organic waste composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayi Hou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, Yek PNY, Wan Mahari WA, Kong SH, Chang JS, Sonne C, Chong WWF, Lam SS. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160990. [PMID: 36539095 DOI: 10.1016/j.scitotenv.2022.160990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.
Collapse
Affiliation(s)
- Shimeng Tan
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Quan Yang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yoke Wang Cheng
- Department of Chemical Engineering, School of Engineering and Computing, Manipal International University, 71800 Putra Nilai, Negeri Sembilan, Malaysia; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602 Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore, Singapore
| | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sieng Huat Kong
- Centre on Technological Readiness and Innovation in Business Technopreneurship (CONTRIBUTE), University of Technology Sarawak, 96000 Sibu, Sarawak, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; University Centre for Research and Development, Department of Chemistry Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
11
|
Yan Y, Wu W, Huang C, Li W, Li Y. Coupling network of hydrogen sulfide precursors and bacteria in kitchen waste composting. BIORESOURCE TECHNOLOGY 2023; 372:128655. [PMID: 36693506 DOI: 10.1016/j.biortech.2023.128655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
This study was focused on the changes of hydrogen sulfide (H2S), its precursors, and microorganisms associated with its transformation during the composting process of kitchen waste. The results showed that the content of cysteine (Cys) and methionine (Met) decreased by 32.3 % and 57.5 % respectively, while the content of sulfate (SO42-) changed little during composting. The main release period of H2S was during the high-temperature period of composting, Cys was its main precursor. Based on network analysis, a total of 15 core genera associated with the conversion of H2S precursors were identified, and the transformation of the H2S precursor was mainly influenced by Filomicrobium. Temperature, pH, and TN levels had a positive effect on Filomicrobium. It could find a balance point by controlling these three factors to reduce the production of H2S.
Collapse
Affiliation(s)
- Yimeng Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanhong Li
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
12
|
Wang C, Wang Y, Yan S, Li Y, Zhang P, Ren P, Wang M, Kuang S. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 367:128253. [PMID: 36334868 DOI: 10.1016/j.biortech.2022.128253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper disposal of antibiotic fermentation dregs poses a risk of releasing antibiotics and antibiotic resistant bacteria to the environment. Therefore, this study evaluated the effects of biochar addition to lincomycin fermentation dregs (LFDs) composting. Biochar increased compost temperature and enhanced organic matter decomposition and residual antibiotics removal. Moreover, a 1.5- to 17.0-fold reduction in antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) was observed. Adding biochar also reduced the abundances of persistent ARGs hosts (e.g., Streptomyces, Pseudomonas) and ARG-related metabolic pathways and genes (e.g., ATP-binding cassette type-2 transport, signal transduction and multidrug efflux pump genes). By contrast, compost decomposition improved due to enhanced metabolism of carbohydrates and amino acids. Overall, adding biochar into LFDs compost reduced the proliferation of ARGs and enhanced microbial community metabolism. These results demonstrate that adding biochar to LFDs compost is a simple and efficient way to decrease risks associated with LFDs composting.
Collapse
Affiliation(s)
- Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yafei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yingchun Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Zhang
- Heilongjiang Lianshun Biotechnology Co. Ltd., Qitaihe 154264, China
| | - Peng Ren
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
13
|
He Y, Liu D, He X, Wang Y, Liu J, Shi X, Chater CCC, Yu F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116377. [PMID: 36352711 DOI: 10.1016/j.jenvman.2022.116377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.
Collapse
Affiliation(s)
- Yan He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA; School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jianwei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, 553600, Guizhou, China
| | | | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
14
|
Ma S, Liu H. Three-dimensional printed bulking agents reduce antibiotic resistance genes in swine manure aerobic composting by regulating oxygen concentration to alter host microorganisms and mobile genetic elements. BIORESOURCE TECHNOLOGY 2022; 359:127489. [PMID: 35724908 DOI: 10.1016/j.biortech.2022.127489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) in manure aerobic composting are a potential environmental pollutant. Therefore, reducing the abundance of ARGs is crucial. The effects of adding three-dimensional printed bulking agents (3DBAs) on ARGs in aerobic composting of swine manure were investigated in this study. Compared with the control group, 3DBAs with different addition dosages can greatest reduce the total ARGs by 5.98%, tetracycline resistance genes by 14.02%, macrolide resistance genes by 9.65%, and sulfonamide resistance genes by 20.59%. By further combining physicochemical parameters, host microorganisms, and mobile genetic elements (MGEs) for analysis, it was found that oxygen concentration was vital for ARGs reduction, and 3DBAs with regular porosity and uniform size indirectly regulate the activity of host microorganisms and MGEs abundance by changing the oxygen consumption, finally reducing vertical or horizontal ARGs transfer risks. Overall, 3DBAs addition is an effective strategy to reduce the abundance of ARGs in aerobic composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Qiu T, Huo L, Guo Y, Gao M, Wang G, Hu D, Li C, Wang Z, Liu G, Wang X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. ENVIRONMENTAL MICROBIOME 2022; 17:42. [PMID: 35953830 PMCID: PMC9367140 DOI: 10.1186/s40793-022-00437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Antibiotics and antibiotic resistance genes (ARGs) used in intensive animal farming threaten human health worldwide; however, the common resistome, ARG mobility, and ARG host composition in different animal manures and mixed manure composts remain unclear. In the present study, metagenomic assembly and cross-sample mapping were used to comprehensively decipher the common resistome and its potential mobility and hosts in animal manure and composts. RESULTS In total, 201 ARGs were shared among different animal (layer, broiler, swine, beef cow, and dairy cow) manures and accounted for 86-99% of total relative abundance of ARGs. Except for multidrug, sulfonamide, and trimethoprim resistance genes, the relative abundance of most ARGs in composts was significantly lower than that in animal manure. Procrustes analysis indicated that antibiotic residues positively correlated with ARG composition in manure but not in composts. More than 75% ARG subtypes were shared between plasmids and chromosomes in our samples. Transposases could play a pivotal role in mediating the transfer of ARGs between different phyla in animal manure and composting. Cross-sample mapping to contigs carrying ARGs showed that the hosts of common resistome in manure had preference on animal species, and the dominant genus of ARG host shifted from Enterococcus in manure to Pseudomonas in composts. The broad host range and linking with diverse mobile genetic elements (MGEs) were two key factors for ARGs, such as sul1 and aadA, which could survive during composting. The multidrug resistance genes represented the dominant ARGs in pathogenic antibiotic-resistant bacteria in manure but could be effectively controlled by composting. CONCLUSIONS Our experiments revealed the common resistome in animal manure, classified and relative quantified the ARG hosts, and assessed the mobility of ARGs. Composting can mitigate ARGs in animal manure by altering the bacterial hosts; however, persistent ARGs can escape from the removal because of diverse host range and MGEs. Our findings provide an overall background for source tracking, risk assessment, and control of livestock ARGs.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Linhe Huo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Dong Hu
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Cheng Li
- Institute of Quality Standard and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
16
|
Tong Z, Liu F, Tian Y, Zhang J, Liu H, Duan J, Bi W, Qin J, Xu S. Effect of biochar on antibiotics and antibiotic resistance genes variations during co-composting of pig manure and corn straw. Front Bioeng Biotechnol 2022; 10:960476. [PMID: 35979171 PMCID: PMC9377313 DOI: 10.3389/fbioe.2022.960476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Pig manure is a reservoir of antibiotics and antibiotic resistance genes (ARGs). The effect of biochar on the variations in physicochemical properties, bacterial communities, antibiotics, ARGs, and mobile genetic elements (MGEs) of compost product during co-composting of pig manure and corn straw have been investigated in this study. Compared with the control treatment (CK), biochar addition accelerated the increase in pile temperature and prolonged the high temperature period (>55°C) for 2 days. Under biochar influence, organic matter degradation, NH4+-N conversion and NO3−-N production was accelerated, and dissolved total organic carbon (DOC) and dissolved total nitrogen (DTN) utilization by microorganisms were enhanced. Biochar addition altered the microbial community and promoted the vital activity of Actinobacteria in the later composting stage. The antibiotics removal efficiency (except danofloxacin and enrofloxacin) was accelerated in the early composting stage (1–14 days) by biochar addition, the pile temperature had a positive effect on antibiotics removal, and the total antibiotics removal efficiency in CK and CK+Biochar treatments was 69.58% and 78.67% at the end of the composting process, respectively. The absolute abundance of most of the ARGs in the CK+Biochar treatment was lower than that in the CK treatment during composting, and the ARGs removal mainly occurred in the early (1–14 days) and later (28–50 days) stages. Biochar addition reduced the absolute abundance of MGEs (intI1, intI2) in the compost product, and most of the ARGs had a significant positive correlation with MGEs. Network analysis and redundancy analysis showed that ARGs and MGEs occurred in various host bacteria (Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Halanaerobiaeota), and that DTN and NH4+-N are the main factors regulating the changes in bacterial communities, antibiotics, ARGs, and MGEs during composting. Moreover, MGEs contributed the most to the variation in ARGs. In summary, biochar addition during composting accelerated antibiotics removal and inhibited accumulation and transmission of ARGs. The results of this study could provide theoretical and technical support for biochar application for antibiotics and ARGs removal during livestock and poultry manure composting.
Collapse
Affiliation(s)
- Zhenye Tong
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Fenwu Liu,
| | - Yu Tian
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Jingzhi Zhang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Hui Liu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Jiaze Duan
- Nongshengyuan Family Farm, Jinzhong, China
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Junmei Qin
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| | - Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
17
|
Wei Y, Gu J, Wang X, Song Z, Sun W, Hu T, Guo H, Xie J, Lei L, Xu L, Li Y. Elucidating the beneficial effects of diatomite for reducing abundances of antibiotic resistance genes during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153199. [PMID: 35063512 DOI: 10.1016/j.scitotenv.2022.153199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Diatomite (DE) has been used for nitrogen conservation during the composting of feces but its effects on antibiotic resistance genes (ARGs) and the associated mechanisms are still unclear. In this study, DE was added at three different proportions (0%, 4%, and 8%) to swine manure during composting. The results showed that adding DE helped to reduce the abundances of ARGs and the maximum decrease (88.99%) occurred with the highest dose. DE amendment promoted the transformation of reducible copper into a more stable form, i.e., the residual fraction, which reduced the selective pressure imposed by copper and further decreased the abundances of ARGs. Tn916/1545 and intI1 were critical genetic components related to ARGs, and thus the reductions in the abundances of ARGs may be attributed to the suppression of horizontal transfer due to the decreased abundances of mobile genetic elements (MGEs). The microbial community structure (bacterial abundance and diversity) played key role in the evolution of ARGs. DE could enhance the competition between hosts and non-hosts of ARGs by increasing the bacterial community diversity. Compared with CK, DE amendment optimized the bacterial community by reducing the abundances of the potential hosts of ARGs and pathogens such as Corynebacterium, thereby improving the safety of the compost product. In addition, KEGG function predictions revealed that adding DE inhibited the metabolic pathway and genes related to ARGs. Thus, composting with 8% DE can reduce the risk of ARG transmission and improve the practical value for agronomic applications.
Collapse
Affiliation(s)
- Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Li X, Wang P, Chu S, Xu Y, Su Y, Wu D, Xie B. Short-term biodrying achieves compost maturity and significantly reduces antibiotic resistance genes during semi-continuous food waste composting inoculated with mature compost. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127915. [PMID: 34863571 DOI: 10.1016/j.jhazmat.2021.127915] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Food waste (FW) is important object of resource utilization and source of antibiotic resistance genes (ARGs). This study investigated the effects of biodrying combined with inoculating mature compost (B&M) on the composting efficiency, succession of bacterial communities and their links with metabolism functions as well as the fate of ARGs during FW composting. The results showed that B&M could rapidly raise and maintain high relative abundance of Bacillaceae (66.59-94.44%) as well as composting temperature (45.86-65.86 ℃), so as to achieve the final maturity of FW composting in a short time by regulating microbial carbohydrate (14.02-15.31%) and amino acid metabolism (10.33-12.47%). Network analysis demonstrated that high temperature could effectively inhibit the proliferation and spread of potential bacterial hosts of ARGs and integrons including Lactobacillaceae, Enterobacteriaceae, Leuconostocaceae and Corynebacteriaceae during the first two days of composting. As a result, B&M significantly reduced the absolute (72.09-99.47%) and relative abundances (0.31-2.44 logs) of nearly all ARGs especially ermB, tetM, blaCTX-M and blaOXA. Present study deepened the knowledge of ARGs variation, succession and metabolism functions of bacterial communities when B&M processes were used for FW composting, suggesting a promising technology for reducing the transmission risk of ARGs and reaching maturity of FW composting.
Collapse
Affiliation(s)
- Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Siqin Chu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yulu Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Yin Y, Zhu D, Yang G, Su J, Duan G. Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152851. [PMID: 34990692 DOI: 10.1016/j.scitotenv.2021.152851] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion.
Collapse
Affiliation(s)
- Yue Yin
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianqiang Su
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Awasthi MK, Liu H, Liu T, Awasthi SK, Zhang Z. Effect of biochar addition on the dynamics of antibiotic resistant bacteria during the pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152688. [PMID: 34974024 DOI: 10.1016/j.scitotenv.2021.152688] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In present study, the taxonomic variation of antibiotic resistant bacteria (ARB) in pig manure (PM) composting with coconut shell biochar (CSB) and bamboo biochar (BB) addition was investigated. The experiment was divided into three treatments: T1 (as control or without biochar amendment), T2 was added 10% coconut shell biochar and T3 supplemented with 10% bamboo biochar. The initial feed stock were properly homogenized using a mechanical crusher. PM and wheat straw (WS) were mixed in a 5: 1 dry weight ratio to adjust the initial carbon/nitrogen ratio 25:1, bulk density to ~0.5 (kg/L) and ~60% moisture content, respectively. This experiment was lasted for 42 days. The results indicated the bacterial communities in the three treatments were more different in terms of relative abundance and diversity of dominant bacteria. The control group had the highest abundance of Kingdome bacteria. The changes in ARB was noticed by variation in the relative abundances of Actinobacteria, Proteobacteria, Firmicutes and Bacteroidota. At the end of composting (on day 42), the total RAs of ARB at the class, order, and family levels were considerably reduced in T2 and T3 by ~35.78-38.75%, 36.42-40.63% and 45.82-47.70%, respectively. But in T1 was decreased by 6.16-8.62%, 7.93-8.72% and 8.70-10.15%, as compared with the day 0 sample. However, the CSB was much more effective to reduce 55 to 60% of ARB than T3 or BB applied treatment has 40 to 42% ARB reduction, while control has certainly very less RAa of ARB reduction. Finally, the biochar amendment was significant approach to mitigate the total ARB abundance in compost and it's further used for organic farming purposes.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
21
|
Zhang T, Wu X, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Ok YS, Li G, Tsang DCW, Rinklebe J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127906. [PMID: 34891020 DOI: 10.1016/j.jhazmat.2021.127906] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.
Collapse
Affiliation(s)
- Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiaosha Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
22
|
Qiu X, Feng M, Zhou G, Wang H. Effects of mineral additives on antibiotic resistance genes and related mechanisms during chicken manure composting. BIORESOURCE TECHNOLOGY 2022; 346:126631. [PMID: 34971779 DOI: 10.1016/j.biortech.2021.126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this study, two typical minerals (diatomite and bentonite) were applied during composting, and their influences on antibiotics, antibiotic resistance genes (ARGs), intI1 and the bacterial communities were investigated. The relative abundance of total ARGs decreased by 53.72% and 59.54% in diatomite and bentonite addition compared with control on day 42. The minerals addition also reduced the relative abundance of intI1, as much as 41.41% and 59.81% in diatomite and bentonite treatments. Proteobacteria and Firmicutes were the dominant candidate hosts of the major ARGs. There was a significant correlation between total ARGs and intI1 during the composting. Structural equation models further demonstrated that intI1 and antibiotics were the predominant direct factors responsible for ARG variations, and composting properties and bacterial community composition also shifted the variation of ARG profiles by influencing intI1. Overall, these findings suggest that diatomite and bentonite could decrease the potential proliferation of ARGs in chicken manure.
Collapse
Affiliation(s)
- Xiuwen Qiu
- Jiangxi Yangtze River Economic Zone Research Institute, Jiujiang University, Jiujiang 332005, PR China; Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, PR China
| | - Mengting Feng
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, PR China; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huijuan Wang
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, PR China
| |
Collapse
|
23
|
Wang G, Zhu J, Xing Y, Yin Y, Li Y, Li Q, Chen R. When dewatered swine manure-derived biochar meets swine wastewater in anaerobic digestion: A win-win scenario towards highly efficient energy recovery and antibiotic resistance genes attenuation for swine manure management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150126. [PMID: 34525757 DOI: 10.1016/j.scitotenv.2021.150126] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
This work explored the feasibility of dewatered swine manure-derived biochar (DSMB) as an additive to facilitate anaerobic digestion (AD) of swine wastewater for energy recovery and antibiotic resistance genes (ARG) attenuation enhancements. With 20 g/L DSMB assistance, the methanogenic lag time of swine wastewater was shortened by 17.4-21.1%, and the maximum CH4 production rate increased from 40.8 mL/d to 48.3-50.5 mL/d, among which DSMB prepared under 300 °C exhibited a better performance than that prepared under 500 °C and 700 °C. Integrated analysis of DSMB electrochemical properties, microbial electron transfer system activity, and microbial community succession revealed the potential of DSMB-300 to act as redox-active electron transfer mediators between syntrophic microbes to accelerate syntrophic methanogenesis via potential direct interspecies electron transfer. Meanwhile, DSMB preparation by pyrolysis dramatically reduced ARG abundance by almost 4 logs. Adding DSMB into AD not only strengthened the attenuation efficiency of ARG in the original swine wastewater, but also effectively controlled the potential risk of horizontal gene transfer by mitigating 74.8% of the mobile gene elements abundance. Accordingly, we proposed a win-win scenario for bio-waste management in swine farms, highlighting the more advanced energy recovery and ARG attenuation compared to the current status.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jinglin Zhu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yanan Yin
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
24
|
Tang Z, Huang C, Tian Y, Xi B, Guo W, Tan W. Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118155. [PMID: 34530239 DOI: 10.1016/j.envpol.2021.118155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Collapse
Affiliation(s)
- Zhurui Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Wei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|