1
|
Guo L, Li L, Zhou S, Xiao P, Zhang L. Metabolomic insight into regulatory mechanism of heterotrophic bacteria nitrification-aerobic denitrification bacteria to high-strength ammonium wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 394:130278. [PMID: 38168563 DOI: 10.1016/j.biortech.2023.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
This work aimed to elucidate the metabolic mechanism of heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria influenced by varying concentrations of ammonium nitrogen (NH4+-N) in high-strength synthetic wastewater treatment. The results showed that the removal rates of NH4+-N and total nitrogen, along with enzymatic activities related to nitrification and denitrification, increased with rising NH4+-N concentrations (N500:500 mg/L, N1000:1000 mg/L and N2000:2000 mg/L). The relative abundances of HN-AD bacteria were 50 %, 62 % and 82 % in the three groups. In the N2000 group, the cAMP signaling pathway, glycerophospholipid metabolites, purines and pyrimidines related to DNA/RNA synthesis, electron donor NAD+-related energy, the tricarboxylic acid (TCA) cycle and glutamate metabolism were upregulated. Therefore, influent NH4+-N at 2000 mg/L promoted glutamate metabolism to accelerate the TCA cycle, and enhanced cellular energy and advanced denitrification activity of bacteria for HN-AD. This mechanism, in turn, enhanced microbial growth and the carbon and nitrogen metabolism of bacteria for HN-AD.
Collapse
Affiliation(s)
- Lei Guo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; School of Chemical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Longshan Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shibo Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - PengYing Xiao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
2
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Zuo F, Yue W, Gui S, Sui Q, Wei Y. Resilience of anammox application from sidestream to mainstream: A combined system coupling denitrification, partial nitritation and partial denitrification with anammox. BIORESOURCE TECHNOLOGY 2023; 374:128783. [PMID: 36828226 DOI: 10.1016/j.biortech.2023.128783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.
Collapse
Affiliation(s)
- Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanglin Gui
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
4
|
Zulkifli M, Abu Hasan H, Sheikh Abdullah SR, Muhamad MH. A review of ammonia removal using a biofilm-based reactor and its challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115162. [PMID: 35561462 DOI: 10.1016/j.jenvman.2022.115162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Extensive growth of industries leads to uncontrolled ammonia releases to environment. This can result in significant degradation of the aquatic ecology as well as significant health concerns for humans. Knowing the mechanism of ammonia elimination is the simplest approach to comprehending it. Ammonia has been commonly converted to less hazardous substances either in the form of nitrate or nitrogen gas. Ammonia has been converted into nitrite by ammonia-oxidizing bacteria and further reduced to nitrate by nitrite-oxidizing bacteria in aerobic conditions. Denitrification takes place in an anoxic phase and nitrate is converted into nitrogen gas. It is challenging to remove ammonia by employing technologies that do not incur particularly high costs. Thus, this review paper is focused on biofilm reactors that utilize the nitrification process. Many research publications and patents on biofilm wastewater treatment have been published. However, only a tiny percentage of these projects are for full-scale applications, and the majority of the work was completed within the last few decades. The physicochemical approaches such as ammonia adsorption, coagulation-flocculation, and membrane separation, as well as conventional biological treatments including activated sludge, microalgae, and bacteria biofilm, are briefly addressed in this review paper. The effectiveness of biofilm reactors in removing ammonia was compared, and the microbes that effectively remove ammonia were thoroughly discussed. Overall, biofilm reactors can remove up to 99.7% ammonia from streams with a concentration in range of 16-900 mg/L. As many challenges were identified for ammonia removal using biofilm at a commercial scale, this study offers future perspectives on how to address the most pressing biofilm issues. This review may also improve our understanding of biofilm technologies for the removal of ammonia as well as polishing unit in wastewater treatment plants for the water reuse and recycling, supporting the circular economy concept.
Collapse
Affiliation(s)
- Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Mohd Hafizuddin Muhamad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
Duyar A, Ciftcioglu V, Cirik K, Civelekoglu G, Uruş S. Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145919. [PMID: 33640548 DOI: 10.1016/j.scitotenv.2021.145919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate (LFL) is one of the most serious environmental problems due to the high concentrations of toxic and hazardous matters. Although several physical, chemical, methods have been tested, biological processes and single or multiple-stage combinations of them have been receiving more attention due to their cost-effective and environmentally-friendly manner. The present work recommended coupling of conventional single-stage A/O with moving bed biofilm reactor and membrane bioreactor (AnoxMBBR/AeMBR) for LFL treatment. The system performance was evaluated for 233 d under varying nitrate concentrations (100-1000 mgNO3--N/L), sludge retention time (SRT) (30-90 d), and HRT (24-48 h) in AnoxMBBR, and constant SRT (infinite) and HRT (48 h) in the AeMBR. The best system performances were observed at 1000 mgNO3--N/L concentration, SRT of 90 d and HRT of 48 h, and the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and nitrate‑nitrogen (NO3-N) were 74.2%, 99.7%, and 89.1%, respectively. Besides, the AeMBR was achieved above 99% NH4+-N removal and not adversely affected by varying operation conditions of AnoxMBBR. A slight increase in selected phthalic acid ester (PAE) concentrations (diethyl phthalate (DEP), di (2-Ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP)) was detected in the AnoxMBR, and complete PAEs removal was attained in the AeMBR. Mg, Al, Si, Na, Fe was detected by SEM-EDX analyses in both biofilm of AnoxMBBR and the cake layers of AeMBR. Nitrobacter and Nitratireductor which showed a relatively high abundance played an important role in the removal of NH4+-N and COD in LFL. The results confirmed that the proposed sequence is efficient for COD removal, nitrogen removal, and PAEs being an acceptable treatment for landfill leachates.
Collapse
Affiliation(s)
- Ahmet Duyar
- Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta, Turkey; University-Industry-Public Collaboration, Research-Development-Application Centre, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Vildan Ciftcioglu
- Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras Turkey
| | - Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey; Research and Application Center for Environmental Concerns, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Gokhan Civelekoglu
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey.
| | - Serhan Uruş
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| |
Collapse
|