1
|
Zhang H, Wang Y, Peng H, He B, Li Y, Wang H, Hu Z, Yu H, Wang Y, Zhou M, Peng L, Wang M. Distinct lignocelluloses of plant evolution are optimally selective for complete biomass saccharification and upgrading Cd 2+/Pb 2+ and dye adsorption via desired biosorbent assembly. BIORESOURCE TECHNOLOGY 2025; 417:131856. [PMID: 39581481 DOI: 10.1016/j.biortech.2024.131856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
In this study, 15 plant species representing plant evolution were selected, and distinct lignocellulose compositions for largely varied biomass enzymatic saccharification were detected. By comparison, the acid-pretreated lignocellulose of rice mutant was of the highest Congo-red adsorption (298 mg/g) accounting for cellulose accessibility, leading to complete cellulose hydrolysis and high bioethanol production. By conducting oxidative-catalysis with the acid-pretreated lignocellulose of moss plant, the optimal biosorbent was generated with maximum Cd/Pb adsorption (54/118 mg/g), mainly due to half-reduced cellulose polymerization degree and raised functional groups accountable for multiple physical and chemical interactions. Furthermore, the acid-pretreated lignocellulose of eucalyptus was of large and small pores for much higher adsorption capacities with direct-yellow and direct-blue than those of the previously-reported. Therefore, this study raises a mechanism model about how distinct lignocelluloses of plant evolution are selective for complete biomass saccharification and optimal biosorbents assembly, providing insights into lignocellulose biosynthesis and biomass conversion.
Collapse
Affiliation(s)
- Huiyi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongtai Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boyang He
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Houji Laboratory of Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
2
|
Zhai Y, Zhang L, Yao S, Zhou X, Jiang K. Green Process for Producing Xylooligosaccharides by Using Sequential Auto-hydrolysis and Xylanase Hydrolysis. Appl Biochem Biotechnol 2024; 196:5317-5333. [PMID: 38157156 DOI: 10.1007/s12010-023-04800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Xylooligosaccharides (XOS), as prebiotic oligomers, are increasingly receiving attention as high value-added products produced from lignocellulosic biomass. Although the XOS contains a series of different degrees of polymerization (DP) of xylose units, DP 2 and 3 (xylobiose (X2) and xylotriose (X3)) are regarded as the main active components in food and pharmaceutical fields. Therefore, in the study, in order to achieve the maximum production of XOS with the desired DP, a combination strategy of sequential auto-hydrolysis and xylanase hydrolysis was developed with corncob as raw material. The evidences showed that the hemicellulosic xylan could be effectively decomposed into various higher DP saccharides (> 4), which were dissolved into the auto-hydrolysate; sequentially, the soluble saccharides could be rapidly hydrolyzed into XOS with desired DP by xylanase hydrolysis. Finally, a maximum XOS yield of 56.3% was achieved and the ratio of (X2 + X3)/XOS was over 80%; meanwhile, the by-products could be controlled at lower levels. Overall, this study provides solid data that support the selective and precise preparation of XOS from corncob, vigorously promoting the application of XOS as functional sugar products.
Collapse
Affiliation(s)
- Yujie Zhai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
3
|
Yu Z, Xie C, Zhang Z, Huang Z, Zhou J, Wang C. Microbial fermentation and black soldier fly feeding to enhance maize straw degradation. CHEMOSPHERE 2024; 353:141498. [PMID: 38382720 DOI: 10.1016/j.chemosphere.2024.141498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
This study used an innovative synergistic microbial and insect approach to treat maize straw and kitchen waste substrates, including cyclic microbial fermentation and feeding of black soldier fly larvae (BSFL) using the fermented substrate. Increasing cycle numbers led to significantly increased cellulose, hemicellulose, and lignin degradation rates (DR) in the maize straw, which increased by 68.28%, 81.43% and 99.95%, respectively, compared to those in the blank group without frass addition. Moreover, according to the experimental results, it was revealed that the structure of lignocellulose, the composition and structure of the bacterial community in the BSFL gut and frass changed significantly after the addition of the previous cycle of frass treatment. Moreover, the differences in amplicon sequence variants (ASVs) between the gut and frass further increased. The relative abundances of Enterococcus and Actinobacteria in the gut and Gammaproteobacteria_unclassified and Dysgonomonas in the frass increased significantly, which may play a more positive role in lignocellulose degradation. In conclusion, this study showed that frass fermentation + BSFL feeding to degrade straw is a promising method and that frass fermentation is beneficial for the whole cycle. Furthermore, these findings underscore the beneficial impact of frass fermentation on the entire cycle.
Collapse
Affiliation(s)
- Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Chenyang Xie
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhiyi Zhang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zezhao Huang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Junfeng Zhou
- School of Resources and Safety Engineering, Xingfa School of Mining Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China.
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| |
Collapse
|
4
|
Yu X, Li J, Sun Y, Xie Y, Su Y, Tang S, Bian S, Liu L, Huo F, Huang Q, Chen G. Co-immobilized multi-enzyme biocatalytic system on reversible and soluble carrier for saccharification of corn straw cellulose. BIORESOURCE TECHNOLOGY 2024; 395:130325. [PMID: 38228219 DOI: 10.1016/j.biortech.2024.130325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Herein, three enzymes (cellulase, β-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.45% under conditions optimized for their enzymatic characteristics and hydrolytic reaction conditions. As a result of the reversibility and solubility of the carrier, the co-immobilized enzymes were recovered from the solid substrate after five cycles, retaining 54.67% of the enzyme activity. The aim of this study is to investigate the potential of co-immobilizing multiple enzymes onto the Eudragit L-100 carrier for the synergistic degradation of straw cellulose.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianzhen Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yubing Xie
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Sijia Bian
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Liying Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fei Huo
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Qing Huang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Zhang L, Shao G, Jin Y, Yang N, Xu X. Efficient hemicellulose removal from lignocellulose by induced electric field-aided dilute acid pretreatment. Int J Biol Macromol 2024; 261:129839. [PMID: 38309397 DOI: 10.1016/j.ijbiomac.2024.129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
This study evaluated the effectiveness of induced electric field (IEF) as a novel electrotechnology to assist dilute acid pretreatment of wheat straw (WS) at atmospheric pressure and low temperature (90 °C). The effects of acid concentration and duration on cellulose recovery, hemicellulose and lignin removal were investigated. Meanwhile, the differences between IEF pretreatment and hydrothermal pretreatment were compared by quantitative and qualitative analysis. The optimal pretreatment condition was acid concentration 1 % with the period of 5 h. Under the parameters, the hemicellulose removal of WS after IEF pretreatment was up to 73.6 %, and the enzymatic efficiency was 55.8 %. In addition, the irregular surface morphology, diminished functional groups associated with hemicellulose, increased specific surface area and pore volume, as well as improved thermal stability of the residual WS support the remarkable effect of IEF pretreatment. The feasibility of IEF pretreatment is might be due to the fact that the magneto-induced electric field promotes ionization of H+ and formation of hydrated hydrogen ions, increasing the acidity of the medium. Secondly, electroporation disrupts the anti-degradation structure of WS and increases the accessibility of cellulose to cellulases. It indicated that IEF is a green and efficient strategy for assisting the separation of hemicellulose from lignocellulose.
Collapse
Affiliation(s)
- Lingtao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoqiang Shao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Jiao M, Wang K, Liu X, Tao Y, Du J, Lv Y, Lu J, Wang H. Bioconversion of spray corn husks into L-lactic acid with liquid hot water pretreatment. Int J Biol Macromol 2024; 258:129154. [PMID: 38171443 DOI: 10.1016/j.ijbiomac.2023.129154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Agricultural by-products like rice husk, bran, and spray corn husks, often utilized as feed, are considered less desirable. This study aims to enhance the utilization rate of these materials by subjecting then to liquid hot water (LHW) pretreatment, followed by enzymatic hydrolysis to produce fermentable sugars. We investigated the production of L-lactic acid using two methods: simultaneous saccharification fermentation (SSF) and separate hydrolysis fermentation (SHF), following varying intensities of LHW pretreatment. The results showed that the optimal enzymatic hydrolysis efficiency was achieved from spray corn husks under the pretreatment conditions of 155 °C and 15 min. SHF was generally more effective than SSF. The glucose L-lactic acid conversion rate in SHF using spray corn husks can reach more than 90 %. Overall, this work proposed a novel, environmental-friendly strategy for efficient and for L- lactic acid production from spray corn husks.
Collapse
Affiliation(s)
- Meizhen Jiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaihua Wang
- Liaoning Vocational College of Light Industry, Dalian 116100, China.
| | - Xiaoyuan Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Vocational College of Light Industry, Dalian 116100, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Fu Z, Zhong L, Tian Y, Bai X, Liu J. Identification of Cellulose-Degrading Bacteria and Assessment of Their Potential Value for the Production of Bioethanol from Coconut Oil Cake Waste. Microorganisms 2024; 12:240. [PMID: 38399644 PMCID: PMC10891699 DOI: 10.3390/microorganisms12020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Bioconversion of lignocellulosic biomass is a highly promising alternative to rapidly reduce reliance on fossil fuels and greenhouse gas emissions. However, the use of lignocellulosic biomass is limited by the challenges of efficient degradation strategies. Given this need, Bacillus tropicus (B. tropicus) with cellulose degradation ability was isolated and screened from rotten dahlia. The strain efficiently utilized coconut oil cake (COC) to secrete 167.3 U/mL of cellulase activity. Electron microscopy results showed significant changes in the structure and properties of cellulose after treatment with B. tropicus, which increased the surface accessibility and the efficiency of the hydrolysis process. The functional group modification observed by Fourier transform infrared spectroscopy indicated the successful depolymerization of COC. The X-ray diffraction pattern showed that the crystallinity index increased from 44.8% to 48.2% due to the hydrolysis of the amorphous region in COC. The results of colorimetry also reveal an efficient hydrolysis process. A co-culture of B. tropicus and Saccharomyces cerevisiae was used to produce ethanol from COC waste, and the maximum ethanol yield was 4.2 g/L. The results of this work show that B. tropicus can be used to prepare biotechnology value-added products such as biofuels from lignocellulosic biomass, suggesting promising utility in biotechnology applications.
Collapse
Affiliation(s)
- Zihuan Fu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Longbin Zhong
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Yan Tian
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Xinpeng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
| | - Jing Liu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou 570228, China; (Z.F.); (L.Z.)
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
8
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
9
|
Wang L, An N, Gao J, Xue H, Li G. The feasibility of sodium hydroxide pretreatment of rice straw for solid substrate preparation to enhance laccase production by solid state fermentation. BMC Biotechnol 2023; 23:16. [PMID: 37391752 PMCID: PMC10314400 DOI: 10.1186/s12896-023-00789-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Currently, broad industrial application of laccases is commonly restricted by the high-cost related production. Solid state fermentation (SSF) using agricultural waste is an attractively economic strategy for laccase production, yet its efficiency is low. Pretreatment of cellulosic substrate might be a vital breakpoint to solve the problem in solid state fermentation (SSF). In this study, sodium hydroxide pretreatment was involved to prepare solid substrates from rice straw. Fermentability of solid substrates in terms of carbon resource supply, accessibility and water retention value, and their influence on performance of SSF were analyzed. RESULTS The results showed that sodium hydroxide pretreatment provided desirable solid substrates with higher enzymatic digestibility and optimal water retention value, which further facilitated the homogeneity of mycelium growth, laccase distribution and nutrition utilization during SSF. The pretreated rice straw (1 h) with diameter less than 0.085 cm gave the maximum laccase production of 2912.34 U/g, which was 7.72 times higher than the control. CONCLUSION Hence, we proposed that enough balance between nutrition accessibility and structure support was a must for rational design and preparation of solid substrate. Additionally, sodium hydroxide pretreatment of lignocellulosic waste might be an ideal step to enhance the efficiency and lower the production cost in SSF.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ni An
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Junting Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guanhua Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
10
|
Lv Y, Zhou S, Zhang X, Xu Y. A smart self-balancing biosystem with reversible competitive adsorption of in-situ anion exchange resin for whole-cell catalysis preparation of lignocellulosic xylonic acid. BIORESOURCE TECHNOLOGY 2022; 363:127998. [PMID: 36150427 DOI: 10.1016/j.biortech.2022.127998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Xylonic acid (XA) bioproduction via whole-cell catalysis of Gluconobacter oxydans is a promising strategy for xylose bioconversion, which is hindered by inhibitor formation during lignocellulosic hydrolysates. Therefore, it is important to develop a catalytic system that can directly utilize hydrolysate and efficiently produce XA. Determination of the dynamic adsorption characteristics of 335 anion exchange resin resulted in a unique and interesting reversible competitive adsorption between acetic acid-like bioinhibitor, fermentable sugar and XA. Xylose in crude lignocellulosic hydrolysates was completely oxidized to 52.52 g/L XA in unprecedented self-balancing biological system through reversible competition. The obtained results showed that in-situ resin adsorption significantly affected the direct utilization of crude lignocellulosic hydrolysate for XA bioproduction (p ≤ 0.05). In addition, the resin adsorbed ca. 90 % of XA during bioconversion. The study achieved a multiple functions and integrated system, "detoxification, neutralization and product separation" for one-pot bioreaction of lignocellulosic hydrolysate.
Collapse
Affiliation(s)
- Yang Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Shaonuo Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Xiaolei Zhang
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
11
|
Fu ZH, Liu J, Zhong LB, Huang H, Zhu P, Wang CX, Bai XP. Screening of cellulose-degrading yeast and evaluation of its potential for degradation of coconut oil cake. Front Microbiol 2022; 13:996930. [PMID: 36274747 PMCID: PMC9583666 DOI: 10.3389/fmicb.2022.996930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Coconut oil cake (COC), a byproduct of oil extraction, contains high levels of cellulose. The aim of this study was to isolate a cellulose-degrading yeast from rotten dahlia that can effectively use COC as the only carbon source for cellulase secretion. Based on screening, Meyerozyma guillermondii CBS 2030 (M. guillermondii) was identified as a potential candidate, with the highest cellulolytic activity among the yeast strains isolated, with the carboxymethyl cellulase (CMCase) activity reaching 102.96 U/mL on day 5. The cellulose in COC samples was evaluated before and after degradation by M. guillermondii. Analysis based on field emission scanning electron microscopy (FESEM) revealed that the COC structure was changed significantly during the treatment, indicating effective hydrolysis. Fourier transform infrared spectroscopy (FTIR) of the modified functional groups indicated successful depolymerization of coconut cake. X-ray diffraction (XRD) and analysis of color differences established effective degradation of COC by M. guillermondii. The results demonstrate that M. guillermondii effectively secretes CMCase and degrades cellulose, which has important practical significance in COC degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin-peng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
12
|
Kashcheyeva EI, Gismatulina YA, Mironova GF, Gladysheva EK, Budaeva VV, Skiba EA, Zolotuhin VN, Shavyrkina NA, Kortusov AN, Korchagina AA. Properties and Hydrolysis Behavior of Celluloses of Different Origin. Polymers (Basel) 2022; 14:polym14183899. [PMID: 36146044 PMCID: PMC9502071 DOI: 10.3390/polym14183899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The present paper is a fundamental study on the physicochemical properties and hydrolysis behavior of cellulose samples differing in origin: bacterial, synthetic, and vegetal. Bacterial cellulose was produced by Medusomyces gisevii Sa-12 in an enzymatic hydrolyzate derived from oat-hull pulp. Synthetic cellulose was obtained from an aqueous glucose solution by electropolymerization. Plant-based cellulose was isolated by treatment of Miscanthus sacchariflorus with dilute NaOH and HNO3 solutions. We explored different properties of cellulose samples, such as chemical composition, degree of polymerization (DP), degree of crystallinity (DC), porosity, and reported infrared spectroscopy and scanning electron microscopy results. The hydrolysis behavior was most notable dependent on the origin of cellulose. For the bacterial cellulose sample (2010 DP, 90% DC, 89.4% RS yield), the major property affecting the hydrolysis behavior was its unique nanoscale reticulate structure promoting fast penetration of cellulases into the substrate structure. The study on enzymatic hydrolysis showed that the hydrolysis behavior of synthetic and Miscanthus celluloses was most influenced by the substrate properties such as DP, DC and morphological structure. The yield of reducing sugars (RS) by hydrolysis of synthetic cellulose exhibiting a 3140 DP, 80% DC, and highly depolymerization-resistant fibers was 27%. In contrast, the hydrolysis of Miscanthus-derived cellulose with a 1030 DP, 68% DC, and enzyme-accessible fibers provided the highest RS yield of 90%. The other properties examined herein (absence/presence of non-cellulosic impurities, specific surface, pore volume) had no considerable effect on the bioconversion of the cellulosic substrates.
Collapse
|
13
|
Lin T, Meng F, Zhang M, Liu Q. Effects of different low temperature pretreatments on properties of corn stover biochar for precursors of sulfonated solid acid catalysts. BIORESOURCE TECHNOLOGY 2022; 357:127342. [PMID: 35605770 DOI: 10.1016/j.biortech.2022.127342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effects of different pretreatment methods including phosphoric acid (PA), freeze drying (FD) and phosphoric acid-freeze drying combined (PA-FD) pretreatment on corn stover characteristics and pyrolysis of corn stover samples was investigated. The results demonstrated that the physiochemical properties of biochars varied significantly. In comparison, PA pretreatment could effectively remove a large portion of inorganics and improve the fuel characteristics. PA-CSB-600 had a greater HHV, lower O/C and H/C ratios, and a lower biochar energy yield (Ye), indicating the possibility for an attractive fuel source. PA-FD pretreatment would significantly affected cell volume and caused mechanical damage to corn stover structure. As a sulfonated solid acid catalyst precursor, the results of cellulose catalytic hydrolysis indicated that the density of -SO3H in FD-CSA was much higher than PA-FD-CSA, but lower surface special area. Specifically, PA-FD-CSB prepared at 600 °C resulted in the maximum increase of cellulose conversion by 34.7-81.3%.
Collapse
Affiliation(s)
- Tianchi Lin
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Fanbin Meng
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Zhang
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingyu Liu
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
14
|
Liao S, Liao L, Huang P, Wang Y, Zhu S, Wang X, Lv T, Li Y, Fan Z, Liu T, Lin Q. Effects of Different Levels of Garlic Straw Powder on Growth Performance, Meat Quality, Antioxidant and Intestinal Mucosal Morphology of Yellow-Feathered Broilers. Front Physiol 2022; 13:902995. [PMID: 35721568 PMCID: PMC9204585 DOI: 10.3389/fphys.2022.902995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
The full utilization of garlic straw can partially alleviate shortage of feedstuff and waste of resources. The purpose of this study was to investigate the effects of garlic straw as an unconventional feed on yellow-feathered broilers. 360 28-day-old yellow-feathered broilers were randomly divided into 4 groups with 6 replicates (cage) per group, 15 per cage. The 4 groups were as follows: control group (basal diet) and experimental group I (basal diet supplemented with 3% garlic straw powder), II (basal diet supplemented with 6% garlic straw powder) and III (basal diet supplemented with 9% garlic straw powder). There was no significant difference in the initial body weight of the broilers among groups (p > 0.05). The test period was 28 days in total. The experiment results showed that there were no significant difference in the average final weight, ADG, ADFI and F/G among groups (p > 0.05). On the one hand, for the breast muscle, the drip loss of experimental group I, II and III were reduced by 17.24% (p <0.05), 20.11% (p <0.05) and 20.50% (p <0.05), respectively, compared with the control group; the redness a* of the experimental groups had a trend of improvement (0.05 <p < 0.1). On the other hand, compared with the control group, the redness a* of the experimental group II increased significantly by 23.18% for the leg muscles (p < 0.05). Furthermore, compared with the control group, GSH-Px of the experimental group III significantly increased by 21.38% (p < 0.05), and SOD of the experimental group I significantly increased by 21.85% (p < 0.05). Finally, there were no significant differences in the intestinal villus height, crypt depth, V/C and intestinal wall thickness among four groups (p >0.05). In conclusion, dietary supplementation of different levels of garlic straw powder can improve meat quality and antioxidant capacity of yellow-feathered broilers without affecting growth performance and intestinal mucosal morphology.
Collapse
Affiliation(s)
- Shuang Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
15
|
Gu Y, Dai L, Zhou X, Xu Y. Multifactorial effects of gluconic acid pretreatment of waste straws on enzymatic hydrolysis performance. BIORESOURCE TECHNOLOGY 2022; 346:126617. [PMID: 34954358 DOI: 10.1016/j.biortech.2021.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The chemical compositions of lignin, hemicellulose and cellulose are so far unascertained to various lignocellulose in respect to effect of cellulose enzymatic hydrolysis. The novel and environment-friendly gluconic acid (GA) pretreatment technology showed impressive results on the enzymatic hydrolysis of cellulose in various agricultural straws. However, only few of the main reasons or critical issues pertaining to this reaction are known. Therefore, the novel GA pretreatment was carried out to remove hemicellulose from the three representative waste straws under different conditions. Next, for the enzymatic hydrolysis of the residual cellulose fraction in the pretreated straws, some mathematical correlations have been investigated between enzyme accessibility, hemicellulose removal rate, and cellulose crystallinity index. Both linear and nonlinear models were compared using five-parameter logic curve, four-parameter logic curve, and Deming regression. Hemicellulose removal was logically ascribed to be the trigger for cellulose saccharification efficiency during GA pretreatment of these waste straws.
Collapse
Affiliation(s)
- Yuanjie Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|