1
|
Fang J, Liao S, Gu T, Lu W, Lu X, Yu M, Li B, Ye J. Efficient nitrogen removal by heterotrophic nitrification-aerobic denitrification yeast Candida boidinii L21: Performance, pathway and application. BIORESOURCE TECHNOLOGY 2024; 414:131621. [PMID: 39393649 DOI: 10.1016/j.biortech.2024.131621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Efficient nitrogen removal yeasts are rarely encountered. Here, a heterotrophic nitrification-aerobic denitrification strain of Candida boidinii L21 was isolated. The optimal removal conditions for strain L21 were glucose as carbon source, C/N of 15, salinity of 10 ppt, pH of 7, shaking speed of 120 rpm, and temperature of 30 °C. Strain L21 removed NH4+-N, NO2--N, NO3--N (14---140 mg/L) and achieved nearly complete NO2--N, removal. Nitrogen balance and enzyme activity analysis indicated the nitrogen removal pathway of strain L21 through assimilation, nitrification, and denitrification pathways. When applied in wastewater and sludge, strain L21 reduced inorganic nitrogen levels within 4 days, with a 58-fold increase in nitrite removal compared to controls. These findings demonstrate that strain L21 holds great potential for enhancing nitrogen removal in wastewater treatment processes, providing valuable insights for improving environmental management practices.
Collapse
Affiliation(s)
- Jinkun Fang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Shaoan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Tengpeng Gu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Weihao Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiaohan Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Mianrong Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Binxi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China.
| |
Collapse
|
2
|
He Q, Tan B, Li M, Su J, Lin B, Wu NP, Shen HN, Chen JJ, Zhang Q. Deciphering the influence of salinity stress on the biological aniline degradation system: Pollutants degradation performance and microbial response. ENVIRONMENTAL RESEARCH 2024; 255:119162. [PMID: 38762003 DOI: 10.1016/j.envres.2024.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd., Wuhan, 430056, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Nan-Ping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hao-Nan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jia-Jing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
3
|
Mumtaj ZA, Khan AR, Alsubih M, Aleya L, Khan RA, Khan S. Removal of pharmaceutical contaminants from hospital wastewater using constructed wetlands: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12856-12870. [PMID: 38277099 DOI: 10.1007/s11356-024-32022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
AbstractPharmaceutical compounds are a significant source of environmental pollution, particularly in hospital wastewater, which contains high concentrations of such compounds. Constructed wetlands have emerged as a promising approach to removing pharmaceutical compounds from wastewater. This paper aims to review the current state of knowledge on the removal of pharmaceutical compounds from hospital wastewater using constructed wetlands, including the mechanism of removal, removal efficiency, and future prospects. Pharmaceutical contaminants have been considered to be one of the most emerging pollutants in recent years. In this review article, various studies on constructed wetlands are incorporated in order to remove the pharmaceutical contaminants. The nature of constructed wetland can be explained by understanding the types of constructed wetland, characteristics of hospital wastewater, removal mechanism, and removal efficiency. The results of the review indicate that constructed wetlands are effective in removing pharmaceutical compounds from hospital wastewater. The removal mechanism of these compounds involves a combination of physical, chemical, and biological processes, including adsorption, degradation, and uptake by wetland plants. The removal efficiency of constructed wetlands varies depending on several factors, including the type and concentration of pharmaceutical compounds, the design of the wetland system, and the environmental conditions. Further research is necessary to optimize the performance of these systems, particularly in the removal of emerging contaminants, to ensure their effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Zeba Ali Mumtaj
- Department of Chemistry, Integral University, Dashauli, India
| | | | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Lotfi Aleya
- National Center of Scientific Research (6249) Franche-Comté University, Besançon, France
| | - Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Saimah Khan
- Department of Chemistry, Integral University, Dashauli, India.
| |
Collapse
|
4
|
Li J, Wang Z, Su J, Wang X, Ali A, Li X. Microbial induced calcium precipitation by Zobellella denitrificans sp. LX16 to simultaneously remove ammonia nitrogen, calcium, and chemical oxygen demand in reverse osmosis concentrates. ENVIRONMENTAL RESEARCH 2024; 240:117484. [PMID: 37879392 DOI: 10.1016/j.envres.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
In recent years, with the rapid development of industrial revolution and urbanization, the generation and treatment of a large number of salt-containing industrial wastewater has attracted wide attention. A novel salt-tolerant Zobellella denitrificans sp. LX16 with excellent nitrogen removal and biomineralization capabilities was isolated in this experiment. Kinetic experiments were conducted to determine the optimal condition. Under this condition, chemical oxygen demand (COD) can be entirely removed together with ammonia nitrogen, and the removal efficiency of calcium was 88.09%. Growth curves and nitrogen balance tests showed that strain LX16 not only had good HNAD and MICP capabilities, but also had high nitrite reductase and nitrate reductase activities during this process. Three-dimensional fluorescence results reflected that when external carbon sources were lacking or salinity was high, humic acid could effectively enhance the metabolic activity of heterotrophic nitrifying aerobic denitrifying microorganisms through extracellular electron transfer, and the substances produced in the metabolic process could promote biommineralization. Moreover, combined with SEM, SEM-EDS, XRD and FTIR analysis, it is concluded that the microbial surface can provide nucleation sites to form calcium salts, and with the increase of alkalinity to generate Ca5(PO4)3OH. The theoretical basis for the use of biological treatment in reverse osmosis wastewater have been proved by this experiment.
Collapse
Affiliation(s)
- Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
5
|
Xie Y, Tian X, He Y, Dong S, Zhao K. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification-aerobic denitrification bacterium Halomonas sp. DN3. BIORESOURCE TECHNOLOGY 2023; 387:129569. [PMID: 37517711 DOI: 10.1016/j.biortech.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Recently, the functional microorganisms capable of eliminating nitrogenous waste have been applied in mariculture systems. As a potential candidate for treating mariculture wastewater, strain DN3 eliminated 100% of ammonia and nitrate and 96.61%-100% of nitrite within 72 h, when single nitrogen sources at concentrations of 0-50 mg/L. Strain DN3 also exhibited the efficient removal performance of mixed-form nitrogen (ammonia, nitrate, and nitrite) at salinity 30 ‰, C/N ratio 20, and 180 rpm. The nitrogen assimilation pathway dominated inorganic nitrogen metabolism, with less nitrogen (14.23%-25.02% of TN) lost into the air via nitrification and denitrification, based on nitrogen balance analysis. Moreover, the bacterial nitrification pathway was explored by enzymatic assays and inhibition assays. These complex nitrogen assimilation and dissimilation processes were further revealed by bacterial genome analysis. These results provide important insight into nitrogen metabolism of Halomonas sp. and theoretical support for treating mariculture wastewater with strain DN3.
Collapse
Affiliation(s)
- Yumeng Xie
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China.
| | - Yu He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Kun Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| |
Collapse
|
6
|
Chen M, He T, Wu Q, Zhang M, He K. Enhanced heterotrophic nitrification and aerobic denitrification performance of Glutamicibacter arilaitensis EM-H8 with different carbon sources. CHEMOSPHERE 2023; 323:138266. [PMID: 36868423 DOI: 10.1016/j.chemosphere.2023.138266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Different carbon sources for Glutamicibacter arilaitensis EM-H8 were evaluated for ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) removal. Strain EM-H8 could rapidly remove NH4+-N, NO3--N and NO2--N. The highest removal rates measured for different forms of nitrogen with different carbon sources were 5.94 mg/L/h for NH4+-N with sodium citrate, 4.25 mg/L/h for NO3--N with sodium succinate, and 3.88 mg/L/h for NO2--N with sucrose. The Nitrogen balance showed that strain EM-H8 could convert 77.88% of the initial nitrogen into nitrogenous gas when NO2--N was selected as the sole nitrogen source. The presence of NH4+-N increased the removal rate of NO2--N from 3.88 to 4.02 mg/L/h. In an enzyme assay, ammonia monooxygenase, nitrate reductase and nitrite oxidoreductase were detected at 0.209, 0.314, and 0.025 U/mg protein, respectively. These results demonstrate that strain EM-H8 performs well for nitrogen removal, and shows excellent potential for simple and efficient removal of NO2--N from wastewater.
Collapse
Affiliation(s)
- Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
7
|
Ahmad E, Sharma SK, Kashyap AS, Manzar N, Sahu PK, Singh UB, Singh HV, Sharma PK. Evaluation of Osmotolerant Potential of Halomonas sulfidaeris MV-19 Isolated from a Mud Volcano. Curr Microbiol 2023; 80:102. [PMID: 36773109 DOI: 10.1007/s00284-023-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Salinity is one of the major challenges for cultivation of crops in a sustainable way because it severely affects plant growth and yield. Keeping this challenge in view, in the current study, a salt-tolerant Halomonas MV-19 was isolated from an extreme niche of mud volcano of Andaman Nicobar Island, India and identified on the basis of standard morphological, biochemical, and physiological tests and identified as Halomonas sulfidaeris strain MV-19 by 16S rRNA gene sequencing. The bacterium can grow on nutrient agar and nutrient broth supplemented with 3.5 M (≥ 20%) sodium chloride (NaCl). Sugar utilization assay revealed that H. sulfidaeris MV-19 utilizes only three sugars (dextrose, fructose, and mannose) from among twenty four tested sugars. The best growth of H. sulfidaeris MV-19 was observed in nutrient broth supplemented with 8% NaCl. When the broth was supplemented with dextrose, fructose, and mannose, the H. sulfidaeris MV-19 grew maximally in nutrient broth supplemented with 8% NaCl and 5% fructose. This strain produced exopolysaccharides (EPS) in nutrient broth supplemented with 8% NaCl and sugars (dextrose, fructose, and mannose). The EPS production was increased by 350% (three and half time) after addition of 5% fructose in nutrient broth compare with the EPS production in nutrient broth without supplemented with sugars. H. sulfidaeris MV-19 strain can produce EPS, which can help aggregate soil particle and reduced osmotic potential in soil, thus, be useful in alleviation of salinity stress in different crops cultivated in saline soils. The findings of the current investigation are expected to contribute towards effective abiotic stress management.
Collapse
Affiliation(s)
- Ees Ahmad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Sushil K Sharma
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur, Chhattisgarh, 493 225, India
| | - Abhijeet S Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Harsh V Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pawan K Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| |
Collapse
|
8
|
Zhang M, He T, Wu Q, Chen M. Efficient detoxication of hydroxylamine and nitrite through heterotrophic nitrification and aerobic denitrification by Acinetobacter johnsonii EN-J1. Front Microbiol 2023; 14:1130512. [PMID: 37138626 PMCID: PMC10149794 DOI: 10.3389/fmicb.2023.1130512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The co-existence of hydroxylamine (NH2OH) and nitrite (NO2 --N) can aggravate the difficulty of wastewater treatment. The roles of hydroxylamine (NH2OH) and nitrite (NO2 --N) in accelerating the elimination of multiple nitrogen sources by a novel isolated strain of Acinetobacter johnsonii EN-J1 were investigated in this study. The results demonstrated that strain EN-J1 could eliminate 100.00% of NH2OH (22.73 mg/L) and 90.09% of NO2 --N (55.32 mg/L), with maximum consumption rates of 1.22 and 6.75 mg/L/h, respectively. Prominently, the toxic substances NH2OH and NO2 --N could both facilitate nitrogen removal rates. Compared with the control treatment, the elimination rates of nitrate (NO3 --N) and NO2 --N were enhanced by 3.44 and 2.36 mg/L/h after supplementation with 10.00 mg/L NH2OH, and those of ammonium (NH4 +-N) and NO3 --N were improved by 0.65 and 1.00 mg/L/h after the addition of 50.00 mg/L NO2 --N. Furthermore, the nitrogen balance results indicated that over 55.00% of the initial total nitrogen was transformed into gaseous nitrogen by heterotrophic nitrification and aerobic denitrification (HN-AD). Ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), and nitrite reductase (NIR), which are essential for HN-AD, were detected at levels of 0.54, 0.15, 0.14, and 0.01 U/mg protein, respectively. All findings confirmed that strain EN-J1 could efficiently execute HN-AD, detoxify NH2OH and NO2 --N, and ultimately promote nitrogen removal rates.
Collapse
|
9
|
Wu Q, He T, Chen M, Zhang M. Nitrogen removal characterization and functional enzymes identification of a hypothermia bacterium Pseudomonas fragi EH-H1. BIORESOURCE TECHNOLOGY 2022; 365:128156. [PMID: 36272678 DOI: 10.1016/j.biortech.2022.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A novel hypothermic strain, Pseudomonas fragi EH-H1, was found to effectively perform heterotrophic nitrification and aerobic denitrification at 15 °C. This strain could consume 100 %, 100 % and 99.95 % of ammonium (54.90 mg∙L-1), nitrate (56.12 mg∙L-1) and nitrite (54.15 mg∙L-1), accompanied by peak removal rates of 5.51, 3.63 and 3.14 mg/L/h, respectively. The ammonium was removed preferentially during simultaneous nitrification and denitrification. Notably, the elimination rate of the toxic nitrite nitrogen remained approximately 3.14 mg/L/h, whether supplemented with ammonium or not. Stepwise inhibition experiments revealed that the key enzymes of ammonia monooxygenase (AMO) and nitrite oxidoreductase (NiR) for nitrification and denitrification coexisted in strain EH-H1. AMO, nitrate reductase and NiR were successfully expressed and detected at 0.637, 0.239 and 0.018 U/mg proteins, respectively. Overall, strain EH-H1 had an outstanding ability to remove nitrogen at low temperatures and could provide guidance for cryogenic wastewater treatment.
Collapse
Affiliation(s)
- Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
10
|
Liu W, Cong B, Lin J, Zhao L, Liu S. Complete genome sequencing and comparison of two nitrogen-metabolizing bacteria isolated from Antarctic deep-sea sediment. BMC Genomics 2022; 23:713. [PMID: 36261793 PMCID: PMC9580203 DOI: 10.1186/s12864-022-08942-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria are an essential component of the earth`s biota and affect circulation of matters through their metabolic activity. They also play an important role in the carbon and nitrogen cycle in the deep-sea environment. In this paper, two strains from deep-sea sediments were investigated in order to understand nitrogen cycling involved in the deep-sea environment. RESULTS In this paper, the basic genomic information of two strains was obtained by whole genome sequencing. The Cobetia amphilecti N-80 and Halomonas profundus 13 genome sizes are 4,160,095 bp with a GC content of 62.5% and 5,251,450 bp with a GC content of 54.84%. Through a comparison of functional analyses, we predicted the possible C and N metabolic pathways of the two strains and determined that Halomonas profundus 13 could use more carbon sources than Cobetia amphilecti N-80. The main genes associated with N metabolism in Halomonas profundus 13 are narG, narY, narI, nirS, norB, norC, nosZ, and nirD. On the contrast, nirD, using NH4+ for energy, plays a main role in Cobetia amphilecti N-80. Both of them have the same genes for fixing inorganic carbon: icd, ppc, fdhA, accC, accB, accD, and accA. CONCLUSION In this study, the whole genomes of two strains were sequenced to clarify the basic characteristics of their genomes, laying the foundation for further studying nitrogen-metabolizing bacteria. Halomonas profundus 13 can utilize more carbon sources than Cobetia amphilecti N-80, as indicated by API as well as COG and KEGG prediction results. Finally, through the analysis of the nitrification and denitrification abilities as well as the inorganic carbon fixation ability of the two strains, the related genes were identified, and the possible metabolic pathways were predicted. Together, these results provide molecular markers and theoretical support for the mechanisms of inorganic carbon fixation by deep-sea microorganisms.
Collapse
Affiliation(s)
- Wenqi Liu
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 350108, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
11
|
Tan G, Xu D, Zhu Z, Zhang X, Li J. Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Insight into halotolerance of a robust heterotrophic nitrifying and aerobic denitrifying bacterium Halomonas salifodinae. BIORESOURCE TECHNOLOGY 2022; 351:126925. [PMID: 35272037 DOI: 10.1016/j.biortech.2022.126925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Studies toward biotreating hypersaline wastewater containing different salts and halotolerant mechanism of robust strains are important but still rare. Here an isolated bacterium Halomonas salifodinae can perform simultaneous nitrification and denitrification (SND) at 15% salinity, showing high nitrogen removal efficiencies of over 98% via response surface methodology optimization. Besides NaCl, this robust strain had high resistance to other salts (KCl, Na2SO4, and K2SO4) and can efficiently remove nitrogen in saline wastewater containing heavy metals such as Fe(II), Mn(II), Zn(II), Cr(VI), Ni(II), and Cu(II). After repeated-batch culturing at different salinities, the treated strains with different halotolerant capabilities were used as single strain model to study halotolerant mechanism via metabolic analysis. The halotolerant bacterium can convert D-proline and glutamic acid to glutamine as well as lactulose to trehalose. The accumulated intracellular compatible solutes can resist high osmotic pressure and bound water molecule in hypersaline wastewater to accomplish high-efficiency SND processes.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
13
|
Zhao JR, Fan XY, Li X, Gao YX, Zhang ZX. Impact of ciprofloxacin and copper combined pollution on activated sludge: Abundant-rare taxa and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2022; 349:126882. [PMID: 35217161 DOI: 10.1016/j.biortech.2022.126882] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the impacts of ciprofloxacin (CIP, 0.05-40 mg/L) and copper (3 mg/L) combined pollution on nitrification, microbial community and antibiotic resistance genes (ARGs) in activated sludge system during stress- and post-effect periods. Higher CIP concentration inhibited nitrification and an average of 50% total nitrogen removal occurred under 40 mg/L of CIP pressure. The stress- and post-effects on bacterial diversity and structure were obviously distinct. Abundant genera were more sensitive to combined pollution than rare genera based on full-scale classification and conditionally rare or abundant taxa were keystone taxa in their interactions. Ammonia oxidation genes were inhibited under high CIP level, but some aerobic denitrifying bacteria (Thauera, Comamonas and Azoarcus) and key genes increased. 96 ARG subtypes were detected with complex positive relationships and their potential hosts (abundant-rare-functional genera) changed in two periods. This study highlights the different stress- and post-effects of combined pollution on activated sludge.
Collapse
Affiliation(s)
- Jun-Ru Zhao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yu-Xi Gao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
14
|
He T, Zhang M, Ding C, Wu Q, Chen M, Mou S, Cheng D, Duan S, Wang Y. New insight into the nitrogen removal capacity and mechanism of Streptomyces mediolani EM-B2. BIORESOURCE TECHNOLOGY 2022; 348:126819. [PMID: 35134523 DOI: 10.1016/j.biortech.2022.126819] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The utilization of actinomycetes as the bioresources for heterotrophic nitrification and aerobic denitrification is rarely reported due to the lack of work to explore their nitrogen biodegradation capabilities. Streptomyces mediolani EM-B2 belonging to actinomycetes could effectively remove high concentration of multiple nitrogen forms, and the maximum removal rates of ammonium, nitrate and nitrite reached 3.46 mg/(L·h), 1.71 mg/(L·h) and 1.73 mg/(L·h), respectively. Nitrite was preferentially consumed from the simultaneous nitrification and denitrification reaction system. Nitrogen balance analysis uncovered that more than 37% of the initial total nitrogen was converted to nitrogenous gas by aerobic denitrification. Experiments with specific inhibitors of nitrification and denitrification revealed that strain EM-B2 contained ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite oxidoreductase, which were successfully expressed and detected as 0.43, 0.59, 0.12 and 0.005 U/mg proteins, respectively. These findings may provide new insights into the actinomycetes for bioremediation of nitrogen pollution wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuanglong Mou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dujuan Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Sijun Duan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
15
|
Ma S, Huang S, Tian Y, Lu X. Heterotrophic ammonium assimilation: An important driving force for aerobic denitrification of Rhodococcus erythropolis strain Y10. CHEMOSPHERE 2022; 291:132910. [PMID: 34793844 DOI: 10.1016/j.chemosphere.2021.132910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Studies on microbial ammonium removal have focused on the heterotrophic nitrification of microorganisms and have rarely studied the role of ammonium assimilation. In this study, Rhodococcus erythropolis strain Y10 with the capacity of aerobic denitrification was screened from the surface flow constructed wetlands that treat high-strength ammonium swine wastewater. Instead of through nitrification, this strain removed ammonium through heterotrophic ammonium assimilation, with the removal rate of 9.69 mg/L/h. The KEGG nitrogen metabolism pathway analysis combined with nitrogen balance calculation manifested that the removal of nitrate and nitrite by R. erythropolis Y10 was achieved through two pathways: 1) assimilation reduction to biomass nitrogen and 2) aerobic denitrification reduction to gaseous nitrogen. Ammonium addition improved the aerobic denitrification rate of nitrate and nitrite. The maximal reduction rates of nitrate and nitrite increased from 7.82 and 7.23 mg/L/h to 9.09 and 8.09 mg/L/h respectively, when 100 mg/L ammonium was separately added to 150 mg/L nitrate and nitrite. Furthermore, the removal efficiency of total nitrogen increased from 69.80% and 77.65% to 89.19% and 91.88%, respectively. Heterotrophic ammonium assimilation promoted the aerobic denitrification efficiency of Rhodococcus erythropolis strain Y10.
Collapse
Affiliation(s)
- Shu Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Shiwei Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
16
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Descriptive data on simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae. Data Brief 2021; 39:107519. [PMID: 34765709 PMCID: PMC8572869 DOI: 10.1016/j.dib.2021.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
This article aims to illustrate and expand the information published in the article “Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation” [1]. The data present the salt tolerance of strain Y5 at different salinities (0%, 5%, 10%, 15%, and 20%). The effect of salinity on the morphology of bacteria was observed by scanning electron microscope. The influence of culture conditions including carbon source, C/N ratio, initial pH value, temperature, and shaking speed on bacterial growth and NH4+-N removal capability of strain Y5 was investigated by single factor experiments. The enzymatic activities of ammonia monooxygenase (AMO), hydroxylamine oxidase (HAO), nitrite reductase (NIR), and periplasm nitrate reductase (NAP) were measured by extracting the cell-free crude enzymes from strain Y5.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|