1
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
2
|
Patra M, Das D, Dey S, Koschella A, Heinze T. Structural and chemical insights into the prebiotic property of hemicellulosic polysaccharide from Santalum album L. Carbohydr Polym 2023; 321:121291. [PMID: 37739501 DOI: 10.1016/j.carbpol.2023.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/24/2023]
Abstract
Hemicellulose was extracted by alkali treatment of de-pectinated cell wall material of Santalum album L. (sandalwood) suspension culture cells. The physicochemical properties and prebiotic activities of a purified major fraction of Hemicellulose-B, termed as HB-I, were investigated. GC analysis of hydrolyzed and derivatized HB-I showed the presence of arabinose (~64 %), galactose (~16 %) and glucose (~16 %) as major monosaccharide units along with minor amount of rhamnose. Methylation and NMR studies on the purified polysaccharide revealed the presence of 6-β-d-Glcp, β-d-Galp, 3,5-α-l-Araf, α-l-Araf, 5-α-l-Araf, 2,3-α-l-Araf and, α-l-Rhap residues, from which a proposed structure of repeating units was established. The growth of probiotic Lactobacillus spp. strains L. acidophilus, L. casei, L. plantarum and L. rhamnosus was promoted while that of Escherichia coli was suppressed significantly in presence of HB-I. Our results highlight valorization of sandalwood biomass and explore the role of mixed α, β-linked heteroglycan as a potential prebiotic molecule thus indicating the possibility of development of low-cost bioprocesses for production of functional food ingredients.
Collapse
Affiliation(s)
- Moumita Patra
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debsankar Das
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, West Bengal, India.
| | - Satyahari Dey
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Andreas Koschella
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Thomas Heinze
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany.
| |
Collapse
|
3
|
Nair LG, Agrawal K, Verma P. Organosolv pretreatment: an in-depth purview of mechanics of the system. BIORESOUR BIOPROCESS 2023; 10:50. [PMID: 38647988 PMCID: PMC10991910 DOI: 10.1186/s40643-023-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 04/25/2024] Open
Abstract
The concept of biorefinery has been advancing globally and organosolv pretreatment strategy has seen an upsurge in research due to its efficiency in removing the recalcitrant lignin and dissolution of cellulose. The high-performance organosolv system uses green solvents and its reusability contributes concurrently to the biorefinery sector and sustainability. The major advantage of the current system involves the continuous removal of lignin to enhance cellulose accessibility, thereby easing the later biorefinery steps, which were immensely restricted due to the recalcitrant lignin. The current system process can be further explored and enhanced via the amalgamation of new technologies, which is still a work in progress. Thus, the current review summarizes organosolv pretreatment and the range of solvents used, along with a detailed mechanistic approach that results in efficient pretreatment of LCB. The latest developments for designing high-performance pretreatment systems, their pitfalls, and advanced assessments such as Life Cycle Assessment along with Techno-Economic Assessment have also been deliberated to allow an insight into its diverse potential applicability towards a sustainable future.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Microbiology, School of Bio Engineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
Manicardi T, Baioni e Silva G, Longati AA, Paiva TD, Souza JPM, Pádua TF, Furlan FF, Giordano RLC, Giordano RC, Milessi TS. Xylooligosaccharides: A Bibliometric Analysis and Current Advances of This Bioactive Food Chemical as a Potential Product in Biorefineries' Portfolios. Foods 2023; 12:3007. [PMID: 37628006 PMCID: PMC10453364 DOI: 10.3390/foods12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Xylooligosaccharides (XOS) are nondigestible compounds of great interest for food and pharmaceutical industries due to their beneficial prebiotic, antibacterial, antioxidant, and antitumor properties. The market size of XOS is increasing significantly, which makes its production from lignocellulosic biomass an interesting approach to the valorization of the hemicellulose fraction of biomass, which is currently underused. This review comprehensively discusses XOS production from lignocellulosic biomass, aiming at its application in integrated biorefineries. A bibliometric analysis is carried out highlighting the main players in the field. XOS production yields after different biomass pretreatment methods are critically discussed using Microsoft PowerBI® (2.92.706.0) software, which involves screening important trends for decision-making. Enzymatic hydrolysis and the major XOS purification strategies are also explored. Finally, the integration of XOS production into biorefineries, with special attention to economic and environmental aspects, is assessed, providing important information for the implementation of biorefineries containing XOS in their portfolio.
Collapse
Affiliation(s)
- Tainá Manicardi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Gabriel Baioni e Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Andreza A. Longati
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thiago D. Paiva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - João P. M. Souza
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
| | - Thiago F. Pádua
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Felipe F. Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Roberto C. Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| | - Thais S. Milessi
- Graduate Program of Energy Engineering, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá 37500-903, MG, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, Km 235, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
5
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
6
|
Shan W, Yan Y, Li Y, Hu W, Chen J. Microbial tolerance engineering for boosting lactic acid production from lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:78. [PMID: 37170163 PMCID: PMC10173534 DOI: 10.1186/s13068-023-02334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass is an attractive non-food feedstock for lactic acid production via microbial conversion due to its abundance and low-price, which can alleviate the conflict with food supplies. However, a variety of inhibitors derived from the biomass pretreatment processes repress microbial growth, decrease feedstock conversion efficiency and increase lactic acid production costs. Microbial tolerance engineering strategies accelerate the conversion of carbohydrates by improving microbial tolerance to toxic inhibitors using pretreated lignocellulose hydrolysate as a feedstock. This review presents the recent significant progress in microbial tolerance engineering to develop robust microbial cell factories with inhibitor tolerance and their application for cellulosic lactic acid production. Moreover, microbial tolerance engineering crosslinking other efficient breeding tools and novel approaches are also deeply discussed, aiming to providing a practical guide for economically viable production of cellulosic lactic acid.
Collapse
Affiliation(s)
- Wenwen Shan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongli Yan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongda Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jihong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Xu P, Shu L, Li Y, Zhou S, Zhang G, Wu Y, Yang Z. Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 2023; 9:e16311. [PMID: 37305492 PMCID: PMC10256924 DOI: 10.1016/j.heliyon.2023.e16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
With the continuous development of agriculture, Agricultural organic waste (AOW) has become the most abundant renewable energy on earth, and it is a hot spot of research in recent years to realize the recycling of AOW to achieve sustainable development of agricultural production. However, lignocellulose, which is difficult to degrade in AOW, greenhouse gas emissions, and pile pathogenic fungi and insect eggs are the biggest obstacles to its return to land use. In response to the above problems researchers promote organic waste recycling by pretreating AOW, controlling composting conditions and adding other substances to achieve green return of AOW to the field and promote the development of agricultural production. This review summarizes the ways of organic waste treatment, factors affecting composting and problems in composting by researchers in recent years, with a view to providing research ideas for future related studies.
Collapse
Affiliation(s)
- Peng Xu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Luolin Shu
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yang Li
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Shun Zhou
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Guanzhi Zhang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Yongjun Wu
- College of Life Sciences, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| | - Zhenchao Yang
- College of Horticulture, Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
8
|
Rabelo SC, Nakasu PYS, Scopel E, Araújo MF, Cardoso LH, Costa ACD. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges. BIORESOURCE TECHNOLOGY 2023; 369:128331. [PMID: 36403910 DOI: 10.1016/j.biortech.2022.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Biorefineries integrate processes for the sustainable conversion of biomass into chemicals, materials, and bioenergy so that resources are optimized and effluents are minimized. Despite the vast potential of lignocellulosic biorefineries, their success depends heavily on effective, economically viable, and sustainable biomass fractionation. Although efficient, organosolv pretreatment still faces challenges that must be overcome for its widespread utilization, mainly related to solvent type and recycling, robustness regarding biomass type and integration of hemicellulose recovery and use. This review shows the recent advances and state-of-the-art of organosolv pretreatment, discussing the advances, such as the use of biobased solvents, whilst also shedding light on the perspectives of using the streams - cellulose, hemicellulose, and lignin - to produce biofuels and products of high added value. In addition, it presents an overview of the existing industrial implementations of organosolv processes and, lastly, shows the main scientific and industrial challenges and opportunities for this process.
Collapse
Affiliation(s)
- Sarita Cândida Rabelo
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil.
| | | | - Eupídio Scopel
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | | | - Luiz Henrique Cardoso
- School of Agriculture, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil; Institute of Biosciences, São Paulo State University (Unesp), Botucatu Campus, Botucatu, São Paulo, Brazil
| | - Aline Carvalho da Costa
- Chemical Engineering School in State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Optimizing the production of docosahexaenoic fatty acid by Crypthecodinium cohnii and reduction in process cost by using a dark fermentation effluent. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Kumar V, Bansal V, Madhavan A, Kumar M, Sindhu R, Awasthi MK, Binod P, Saran S. Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. Bioengineered 2022; 13:4309-4327. [PMID: 35135435 PMCID: PMC8973766 DOI: 10.1080/21655979.2022.2031412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this article was to generate a framework of bio-based economy by an effective utilization of biomass from the perspectives of agriculture for developing potential end bio-based products (e.g. pharmaceuticals, active pharmaceutical ingredients). Our discussion is also extended to the conservatory ways of bioenergy along with development of bio-based products and biofuels. This review article further showcased the fundamental principles for producing these by-products. Thereby, the necessity of creating these products is to be efficaciously utilization by small-scale farmers that can aid the local needs for bio-based materials and energy. Concurrently, the building up of small markets will open up the avenues and linkages for bigger markets. In nutshell, the aim of the review is to explore the pathway of the biotechnological approaches so that less chosen producers and underdeveloped areas can be allied so that pressure on the systems of biomass production can be relaxed.
Collapse
Affiliation(s)
- Vinod Kumar
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad-India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Affiliated to Panjab University, Chandigarh, India
| | - Aravind Madhavan
- Division of Infectious Disease Biology, Rajiv Gandhi Centre for Biotechnology, - Trivandrum- India
| | - Manoj Kumar
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad-India
| | - Raveendran Sindhu
- Deapartment of Food Technology, Tkm Institute of Technology, Kollam-India
| | - Mukesh Kumar Awasthi
- Department of Resource and Environmental Science, College of Natural Resources and Environment, Northwest A&f University, Shaanxi Province, Yangling, PR China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary, Science and Technology (Csir-niist), Trivandrum- India
| | - Saurabh Saran
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India
| |
Collapse
|
11
|
Karnaouri A, Chorozian K, Zouraris D, Karantonis A, Topakas E, Rova U, Christakopoulos P. Lytic polysaccharide monooxygenases as powerful tools in enzymatically assisted preparation of nano-scaled cellulose from lignocellulose: A review. BIORESOURCE TECHNOLOGY 2022; 345:126491. [PMID: 34871721 DOI: 10.1016/j.biortech.2021.126491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Nanocellulose, either in the form of fibers or crystals, constitutes a renewable, biobased, biocompatible material with advantageous mechanical properties that can be isolated from lignocellulosic biomass. Enzyme-assisted isolation of nanocellulose is an attractive, environmentally friendly approach that leads to products of higher quality compared to their chemically prepared counterparts. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively cleave the β-1,4-glycosidic bond of polysaccharides upon activation of O2 or H2O2 and presence of an electron donor. Their use for treatment of cellulose fibers towards the preparation of nano-scaled cellulose is related to the ability of LPMOs to create nicking points on the fiber surface, thus facilitating fiber disruption and separation. The aim of this review is to describe the mode of action of LPMOs on cellulose fibers towards the isolation of nanostructures, thus highlighting their great potential for the production of nanocellulose as a novel value added product from lignocellulose.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Koar Chorozian
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Dimitrios Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | - Antonis Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
12
|
Didrihsone E, Dubencovs K, Grube M, Shvirksts K, Suleiko A, Suleiko A, Vanags J. Crypthecodinium cohnii Growth and Omega Fatty Acid Production in Mediums Supplemented with Extract from Recycled Biomass. Mar Drugs 2022; 20:68. [PMID: 35049923 PMCID: PMC8779103 DOI: 10.3390/md20010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Crypthecodinium cohnii is a marine heterotrophic dinoflagellate that can accumulate high amounts of omega-3 polyunsaturated fatty acids (PUFAs), and thus has the potential to replace conventional PUFAs production with eco-friendlier technology. So far, C. cohnii cultivation has been mainly carried out with the use of yeast extract (YE) as a nitrogen source. In the present study, alternative carbon and nitrogen sources were studied: the extraction ethanol (EE), remaining after lipid extraction, as a carbon source, and dinoflagellate extract (DE) from recycled algae biomass C. cohnii as a source of carbon, nitrogen, and vitamins. In mediums with glucose and DE, the highest specific biomass growth rate reached a maximum of 1.012 h-1, while the biomass yield from substrate reached 0.601 g·g-1. EE as the carbon source, in comparison to pure ethanol, showed good results in terms of stimulating the biomass growth rate (an 18.5% increase in specific biomass growth rate was observed). DE supplement to the EE-based mediums promoted both the biomass growth (the specific growth rate reached 0.701 h-1) and yield from the substrate (0.234 g·g-1). The FTIR spectroscopy data showed that mediums supplemented with EE or DE promoted the accumulation of PUFAs/docosahexaenoic acid (DHA), when compared to mediums containing glucose and commercial YE.
Collapse
Affiliation(s)
- Elina Didrihsone
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
- Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV1048 Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, LV1004 Riga, Latvia; (M.G.); (K.S.)
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, LV1004 Riga, Latvia; (M.G.); (K.S.)
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, LV1006 Riga, Latvia; (K.D.); (A.S.); (A.S.); (J.V.)
- A/S Biotehniskais Centrs, LV1006 Riga, Latvia
- Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV1048 Riga, Latvia
| |
Collapse
|
13
|
Production of Omega-3 Fatty Acids from the Microalga Crypthecodinium cohnii by Utilizing Both Pentose and Hexose Sugars from Agricultural Residues. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The core objective of this work was to take advantage of the unexploited wheat straw biomass, currently considered as a broadly available waste stream from the Greek agricultural sector, towards the integrated valorization of sugar streams for the microbial production of polyunsaturated omega-3 fatty acids (PUFAs). The OxiOrganosolv pretreatment process was applied using acetone and ethanol as organic solvents without any additional catalyst. The results proved that both cellulose-rich solid pulp and hemicellulosic oligosaccharides-rich aqueous liquid fraction after pretreatment can be efficiently hydrolyzed enzymatically, thus resulting in high yields of fermentable monosaccharides. The latter were supplied as carbon sources to the heterotrophic microalga Crypthecodinium cohnii for the production of PUFAs, more specifically docosahexaenoic acid (DHA). The solid fractions consisted mainly of hexose sugars and led to higher DHA productivity than their pentose-rich liquid counterparts, which can be attributed to the different carbon source and C/N ratio in the two streams. The best performance was obtained with the solid pulp pretreated with ethanol at 160 °C for 120 min and an O2 pressure of 16 bar. The total fatty acids content reached 70.3 wt% of dried cell biomass, of which 32.2% was DHA. The total DHA produced was 7.1 mg per g of untreated wheat straw biomass.
Collapse
|