1
|
Li D, Shan R, Gu J, Zhang Y, Zeng X, Lin L, Yuan H, Chen Y. Co-pyrolysis of textile dyeing sludge/litchi shell and CaO: Immobilization of heavy metals and the analysis of the mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:382-392. [PMID: 37776809 DOI: 10.1016/j.wasman.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
To relieve the secondary contamination of heavy metals (HMs), the synergistic effect of co-pyrolysis of textile dyeing sludge (DS)/litchi shell (LS) and CaO on the migration of HMs was demonstrated in this study. The proportions of Cu, Zn, Cr, Mn, and Ni in the F4 fraction increased to 75%, 55%, 100%, 50%, and 62% at the suitable CaO dosages. When 10% CaO was added, the RI value of DLC-10% was reduced to 7.89, indicating low environmental risk. The characterizations of the physicochemical properties of biochar provided support for the HMs immobilization mechanism. HMs combined with inorganic minerals or functional groups to form new stable HMs crystalline minerals and complexes to achieve immobilization of HMs. The pH value and pore structure also play an important role in improving the immobilization performance of HMs. In conclusion, the results provided a new direction for the subsequent harmless treatment of HMs-enriched waste.
Collapse
Affiliation(s)
- Danni Li
- College of Energy, Xiamen University, Xiamen 361102, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Jing Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Yuyuan Zhang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, PR China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361102, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen 361102, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China
| | - Haoran Yuan
- College of Energy, Xiamen University, Xiamen 361102, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China.
| | - Yong Chen
- College of Energy, Xiamen University, Xiamen 361102, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, PR China; Xiamen Key Laboratory of High-valued Utilization of Biomass, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
2
|
Zhang X, Ji B, Tian J, Liu Y. Development, performance and microbial community analysis of a continuous-flow microalgal-bacterial biofilm photoreactor for municipal wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117770. [PMID: 36965425 DOI: 10.1016/j.jenvman.2023.117770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
This work reported the development, performance and microbial community of microalgal-bacterial biofilms cultivated in a continuous-flow photoreactor for municipal wastewater treatment under various conditions. Results showed that microalgal-bacterial biofilms were successfully developed at a HRT of 9 h without external aeration, with a biofilm concentration of around 4690 mg/L being achieved in the steady-state. It was found that further increase of HRT to 12 h did not improve the overall accumulation of biofilm, whereas the growth of microalgae in biofilms was faster than bacteria in the initial stage, indicated by an increased chlorophyll-a&b content in biofilms. After which, the chlorophyll-a&b content in biofilms gradually stabilized at the level comparable with the seed, suggesting that there was a balanced distribution of microalgae and bacteria in biofilms. About 90% of TOC, 71.4% of total nitrogen and 72.6% of phosphorus were removed by microalgal-bacterial biofilms mainly through assimilation in the steady-state photoreactor run at the HRT of 12 h with external aeration. The community analysis further revealed that Cyanobacteria and Chloroflexi were the main components, while Chlorophyta appeared to be the dominant eukaryotic algal community in biofilms. This study could offer new insights into the development of microalgal-bacterial biofilms in a continuous-flow photoreactor for sustainable low-carbon municipal wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Junli Tian
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
3
|
Han H, Li A, Zhu M, Hu S, Xu J, Xiong Z, Ren Q, Wang Y, Jiang L, Su S, Xiang J. Heavy tar evolution characteristics during advanced sludge pyrolysis and biomass gasification integrated process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158107. [PMID: 36055490 DOI: 10.1016/j.scitotenv.2022.158107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Sludge pyrolysis and biomass gasification integrated process (SPBG) is an attractive route for the comprehensive utilization of the two materials but more tar is produced in this process compared to traditional biomass steam gasification. Nitrogen-containing compounds in the tar bring threatens to the environment and heavy components in the tar contributes to undesired coke formation. In current study, the evolution of heavy tar, especially the nitrogen-rich components, during SPBG is revealed for the first time. It was found that heavy components were mainly distributed in the mass range of 150-450 Da, where aromatics consisted of carbon, hydrogen and nitrogen atoms were the most abundant. Deamination (NH3) and the combination of quinoline accompanied with the generation of the heavy components. Organics from sludge could react with biomass to form heavier oxygen-containing molecules. Meanwhile, steam from sludge promoted heavy components to crack by tar reforming reactions and consumed radicals in bio-char to inhibit the catalytic cracking of tar. Under the combination of above reactions, more heavy molecules were generated at low sludge volatile/biomass ratio and the aromatic content in the heavy tar decreased at high sludge volatile/biomass ratio.
Collapse
Affiliation(s)
- Hengda Han
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Aishu Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Zhu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Song Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Xu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhe Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiangqiang Ren
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Jiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Su
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Xiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Jiang Q, Chen H, Fu Z, Fu X, Wang J, Liang Y, Yin H, Yang J, Jiang J, Yang X, Wang H, Liu Z, Su R. Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13950. [PMID: 36360829 PMCID: PMC9655209 DOI: 10.3390/ijerph192113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Traditional wastewater treatment technologies have become increasingly inefficient to meet the needs of low-consumption and sustainable wastewater treatment. Researchers are committed to seeking new wastewater treatment technologies, to reduce the pressure on the environment caused by resource shortages. Recently, a microalgal-bacterial granular sludge (MBGS) technology has attracted widespread attention due to its high efficiency wastewater treatment capacity, low energy consumption, low CO2 emissions, potentially high added values, and resource recovery capabilities. This review focused primarily on the following aspects of microalgal-bacterial granular sludge technology: (1) MBGS culture and maintenance operating parameters, (2) MBGS application in different wastewaters, (3) MBGS additional products: biofuels and bioproducts, (4) MBGS energy saving and consumption reduction: greenhouse gas emission reduction, and (5) challenges and prospects. The information in this review will help us better understand the current progress and future direction of the MBGS technology development. It is expected that this review will provide a sound theoretical basis for the practical applications of a MBGS technology in environmentally sustainable wastewater treatment, resource recovery, and system optimization.
Collapse
Affiliation(s)
- Qianrong Jiang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Honglei Chen
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zeding Fu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiaohua Fu
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiacheng Wang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingqi Liang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hailong Yin
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junbo Yang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Jiang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xinxin Yang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - He Wang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| | - Rongkui Su
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
5
|
Brewer’s Spent Grain Biochar: Grinding Method Matters. Mol Vis 2022. [DOI: 10.3390/c8030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work is based on the principle of biomass waste valorization. Brewer’s spent grains (BSG) come from breweries as by-products. Their huge amount of production on an industrial scale should focus our attention on their valorization, which creates challenges as well as opportunities. One way to valorize BSG by-products is to convert them into biochar, a functional material with multiple potential applications. With an emphasis on sustainable development and the circular economy, in this work, we focused on a comparative study of the different mechanical processes of BSG grinding and their effect on the resulting biochar formed after pyrolysis. Home appliances such as blenders, coffee mills, and mortar and pestles were used for this purpose. FESEM images confirmed the successful creation of five different morphologies from the same BSG under the same pyrolysis conditions. Interestingly, a novel Chinese tea leaf egg-like biochar was also formed. It was found that a series of physical pretreatments of the biomass resulted in the reduced roughness of the biochar surface, i.e., they became smoother, thus negatively affecting the quality of the biochar. XRD revealed that the biomass physical treatments were also reflected in the crystallinity of some biochar. Via a Raman study, we witnessed the effect of mechanical pressure on the biomass for affecting the biochar features through pressure-induced modifications of the biomass’s internal structure. This induced enhanced biochar graphitization. This is a good example of the role of mechanochemistry. DSC revealed the thermochemical transformation of the five samples to be exothermic reactions. This study opens up an interesting possibility for the synthesis of biochar with controlled morphology, crystallinity, degree of graphitization, and heat capacity.
Collapse
|
6
|
Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater. ENERGIES 2022. [DOI: 10.3390/en15155387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes.
Collapse
|
7
|
Zhang X, Lei Z, Liu Y. Microalgal-bacterial granular sludge for municipal wastewater treatment: From concept to practice. BIORESOURCE TECHNOLOGY 2022; 354:127201. [PMID: 35460841 DOI: 10.1016/j.biortech.2022.127201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Recently, increasing interest has been placed in microalgal-bacterial granular sludge (MBGS) in the journey towards the energy and carbon neutrality of municipal wastewater treatment. Different from aerobic granular sludge, the performance of MBGS is mainly determined by the mutualism and symbiosis between coexisting microalgae and bacteria. It appears from the literature that most of studies on MBGS were conducted at small benchtop scales under controlled conditions with synthetic wastewater. Therefore, this article attempts to look into the major engineering gaps between the knowledge generated from numerous laboratory research works and the large-scale application of MBGS, including massive production of MBGS, type of bioreactor, effect of alternate photo and dark metabolisms on effluent quality, resource recovery from waste MBGS, etc. It is clearly demonstrated that MBGS is still at its infant stage, and more effort is strongly needed to identify the technological bottlenecks of full-scale applications, while providing corresponding engineering solutions.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
8
|
Hydrogen-Rich Gas Production with the Ni-La/Al2O3-CaO-C Catalyst from Co-Pyrolysis of Straw and Polyethylene. Catalysts 2022. [DOI: 10.3390/catal12050496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ni-based catalysts have been extensively investigated because of their superior catalytic performance. In this study, the Ni-La/Al2O3-CaO-C catalyst was prepared by homogeneous precipitation, employed in the co-pyrolysis of soybean straw with polyethylene to produce hydrogen. The optimal experimental conditions were identified by discussing the carrier synthesis ratio, feedstock ratio, and addition of La. Additionally, the stability of the catalyst was evaluated. It was established that the carrier was produced using a molar ratio, the raw ingredients ratio of 5:5, and that the optimum catalytic action was obtained when La was added. Co-pyrolysis of soybean straw with polyethylene (PE) that was catalyzed by Ni-La/Al2O3-CaO-C generated 55.45 vol% of H2 under ideal experimental circumstances. After six applications, the H2 yield was 33.89 vol%, compared to 27.5 vol% for the Ni/Al2O3-CaO-C catalyst. The experimental results indicate that Ni-La/Al2O3-CaO-C exhibits superior catalytic activity and stability than Ni/Al2O3-CaO-C.
Collapse
|
9
|
Facile Synthesis of Magnetic Biochar Derived from Burley Tobacco Stems towards Enhanced Cr (VI) Removal: Performance and Mechanism. NANOMATERIALS 2022; 12:nano12040678. [PMID: 35215006 PMCID: PMC8878553 DOI: 10.3390/nano12040678] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
In this study, ferric-loaded magnetic burley tobacco stem biochar (MBTS) was synthesized via pyrolysis to improve the removal of Cr(VI). The results showed that MBTS had an adsorption capacity of 54.92 mg Cr(VI)/g, which was about 14 times higher than raw burley tobacco stem biochar (i.e., 3.84 mg/g). According to the findings obtained, a three-step mechanism of Cr(VI) removal by MBTS was further put forward, i.e., (1) Cr(VI) exchanged with hydroxyl groups on MBTS, (2) the reduction in Cr(VI) to Cr(III) mediated by oxygen-containing groups, and (3) the chelation of produced Cr(III) with the amino groups on MBTS. FTIR spectra further revealed that C-N, C-H, and C=C groups played an important role in Cr(VI) removal. Furthermore, the adsorption equilibrium and kinetics of Cr(VI) on MBTS could better be described by the Langmuir equation and pseudo-second-order rate equation. This study clearly demonstrated that ferric-loaded biochar derived from burley tobacco stems could serve as a cost-effective magnetic adsorbent for the high-efficiency removal of soluble Cr(VI) from wastewater. Tobacco stem-adsorbed Cr(VI) realized a green path for treating waste by waste.
Collapse
|
10
|
Physicochemical Properties of Torrefied and Pyrolyzed Food Waste Biochars as Fuel: A Pilot-Scale Study. ENERGIES 2022. [DOI: 10.3390/en15010333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food waste is an important constituent of municipal solid waste, and research has been conducted to develop various methods for treating food waste and recycling it (e.g., fuel, landfilling, composting, conversion into animal feed, drying, and carbonization). Among these, the drying and carbonization techniques can change food waste into fuel; however, they need more energy than fermentation and anaerobic digestion procedures. In this study, we investigated the physicochemical properties of food waste biochar produced under torrefaction (270 °C) and pyrolysis (450 °C) conditions to establish its applicability as fuel by comparing temperatures, residence times, and conditions before and after demineralization. The higher heating value increased after the demineralization process under both temperature conditions (270 °C and 450 °C), and the chlorine level was lower at 270 °C temperature demineralization than at 450 °C. During the demineralization process, Na and K were better removed than Ca and Mg. Additionally, Cr, Hg, Cd, and Pb levels were lower than those according to the European Union and Korean domestic bio-SRF recovered fuel criteria, confirming the applicability of biochar as fuel.
Collapse
|