1
|
Fischer O, Lemaire R, Bensakhria A. Thermogravimetric analysis and kinetic modeling of the pyrolysis of different biomass types by means of model-fitting, model-free and network modeling approaches. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2024; 149:10941-10963. [PMID: 39512607 PMCID: PMC11538151 DOI: 10.1007/s10973-023-12868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/25/2023] [Indexed: 11/15/2024]
Abstract
This work aims at comparing the ability of 7 modeling approaches to simulate the pyrolysis kinetics of spruce wood, wheat straw, swine manure, miscanthus and switchgrass. Measurements were taken using a thermogravimetric analyzer (TGA) with 4 heating rates comprised between 5 and 30 K min-1. The obtained results were processed using 3 isoconversional methods (Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW) and Friedman), 1-step and 3-step Kissinger models, as well as an advanced fitting method recently proposed by Bondarchuk et al. [1] (Molecules 28:424, 2023, 10.3390/molecules28010424). Seventeen reaction models were considered to derive rate constant parameters, which were used to simulate the variation of the fuel conversion degree α as a function of the temperature T . To complement this benchmarking analysis of the modeling approaches commonly used to simulate biomass pyrolysis, a network model, the bio-CPD (chemical percolation devolatilization), was additionally considered. The suitability of each model was assessed by computing the root-mean-square deviation between simulated and measured α = f ( T ) profiles. As highlights, the model-free methods were found to accurately reproduce experimental results. The agreement between simulated and measured data was found to be higher with the Friedman model, followed by the KAS, FWO, 3-step, and 1-step Kissinger models. As for the bio-CPD, it failed to predict measured data as well as the above-listed models. To conclude, although it was less efficient than the Friedman, KAS or OFW models, the fitting approach from Bondarchuk et al. [1] (Molecules 28:424, 2023, 10.3390/molecules28010424) still led to satisfactory results, while having the advantage of not requiring the selection of a reaction model a priori.
Collapse
Affiliation(s)
- Olivier Fischer
- TFT Laboratory, Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3 Canada
- ESCOM, TIMR, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne Cedex, France
| | - Romain Lemaire
- TFT Laboratory, Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3 Canada
| | - Ammar Bensakhria
- ESCOM, TIMR, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne Cedex, France
| |
Collapse
|
2
|
Rasaq WA, Okpala COR, Igwegbe CA, Białowiec A. Navigating Pyrolysis Implementation-A Tutorial Review on Consideration Factors and Thermochemical Operating Methods for Biomass Conversion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:725. [PMID: 38591602 PMCID: PMC10856175 DOI: 10.3390/ma17030725] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 04/10/2024]
Abstract
Pyrolysis and related thermal conversion processes have shown increased research momentum in recent decades. Understanding the underlying thermal conversion process principles alongside the associated/exhibited operational challenges that are specific to biomass types is crucial for beginners in this research area. From an extensive literature search, the authors are convinced that a tutorial review that guides beginners particularly towards pyrolysis implementation, from different biomasses to the thermal conversion process and conditions, is scarce. An effective understanding of pre-to-main pyrolysis stages, alongside corresponding standard methodologies, would help beginners discuss anticipated results. To support the existing information, therefore, this review sought to seek how to navigate pyrolysis implementation, specifically considering factors and thermochemical operating methods for biomass conversion, drawing the ideas from: (a) the evolving nature of the thermal conversion process; (b) the potential inter-relatedness between individual components affecting pyrolysis-based research; (c) pre- to post-pyrolysis' engagement strategies; (d) potential feedstock employed in the thermal conversion processes; (e) the major pre-treatment strategies applied to feedstocks; (f) system performance considerations between pyrolysis reactors; and (g) differentiating between the reactor and operation parameters involved in the thermal conversion processes. Moreover, pre-pyrolysis activity tackles biomass selection/analytical measurements, whereas the main pyrolysis activity tackles treatment methods, reactor types, operating processes, and the eventual product output. Other areas that need beginners' attention include high-pressure process reactor design strategies and material types that have a greater potential for biomass.
Collapse
Affiliation(s)
- Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
| | - Charles Odilichukwu R. Okpala
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
| |
Collapse
|
3
|
Nunes IDS, Schnorr C, Perondi D, Godinho M, Diel JC, Machado LMM, Dalla Nora FB, Silva LFO, Dotto GL. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H 2 Generation and Use of the Biochars for CO 2 Capture. Molecules 2022; 27:7515. [PMID: 36364342 PMCID: PMC9658530 DOI: 10.3390/molecules27217515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2023] Open
Abstract
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g-1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g-1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.
Collapse
Affiliation(s)
- Isaac dos S. Nunes
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Carlos Schnorr
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Daniele Perondi
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul—UCS, Caxias do Sul 95070-560, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul—UCS, Caxias do Sul 95070-560, Brazil
| | - Julia C. Diel
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Lauren M. M. Machado
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Fabíola B. Dalla Nora
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| | - Luis F. O. Silva
- Department of Natural and Exact Sciences, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, 1000-7, Santa Maria 97105–900, Brazil
| |
Collapse
|
4
|
Komandur J, Vinu R, Mohanty K. Pyrolysis kinetics and pyrolysate composition analysis of Mesua ferrea L: A non-edible oilseed towards the production of sustainable renewable fuel. BIORESOURCE TECHNOLOGY 2022; 351:126987. [PMID: 35292381 DOI: 10.1016/j.biortech.2022.126987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The present study on one non-edible oilseed (Mesua ferrea L) employs the pyrolysis process to understand the pyrolysate composition and the thermal degradation behavior of biomass. The physicochemical characterization of whole seed was investigated using thermogravimetric analysis at different heating rates (5, 10, 20, and 40 °C min-1), bomb calorimeter, proximate/ultimate analysis. FTIR analysis confirmed the presence of the lignocellulosic compounds. Kinetic analysis of biomass was investigated using iso-conversional models such as Friedman, Kissinger-Akhaira-Sunose, Ozawa-Flynn-Wall, Starink, Distributed Activation Energy model, and Avrami model. Further, composition analysis of the pyrolytic vapor was analyzed using analytical fast pyrolysis coupled with gas chromatogram/mass spectrometer (Py-GC/MS) at 400, 500, 600 °C. This study confirmed that alkenes were major pyrolysates, followed by alkanes and esters. The current investigation suggested that Mesua ferrea L whole seed can be converted to valuable chemicals using pyrolysis.
Collapse
Affiliation(s)
- Janaki Komandur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - R Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
5
|
Mao X, Xie Q, Duan Y, Yu S, Nie Y. Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products. MATERIALS 2022; 15:ma15041565. [PMID: 35208105 PMCID: PMC8875455 DOI: 10.3390/ma15041565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
A stable temperature site and the speed of heating the feedstocks play a key role in pyrolysis processes. In this study, the product distribution arising from pyrolysis of methyl ricinoleate (MR) at 550 °C with low and high heating rates was first studied by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The results show that fast pyrolysis of MR favored the production of undecylenic acid methyl ester (UAME) and heptanal (HEP). Density functional theory (DFT) calculations were employed to reveal the UAME and HEP formation process from pyrolysis of MR. The bond dissociation energies (BDEs) of C–C bonds in MR showed that the C11–C12 bond is the weakest. This suggests that UAME and HEP are two major products. The process of slow and fast MR pyrolysis was the dehydration-first and the pyrolysis-first trend, respectively. The calculated activation energies of MR pyrolysis to UAME and HEP and MR dehydration to 9,12-octadecadienoic acid methyl ester were 287.72 and 238.29 kJ/mol, respectively. The much higher product yields obtained in the fast pyrolysis reactors than those from conventional tubular reactors confirmed the proposed process.
Collapse
Affiliation(s)
| | | | | | | | - Yong Nie
- Correspondence: ; Tel.: +86-57-88320646
| |
Collapse
|