1
|
Li S, Zhang T, Zheng H, Dong X, Leong YK, Chang JS. Advances and challenges in the removal of organic pollutants via sulfate radical-based advanced oxidation processes by Fe-based metal-organic frameworks: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171885. [PMID: 38527540 DOI: 10.1016/j.scitotenv.2024.171885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Tianqi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
2
|
Xia M, Niu Q, Qu X, Zhang C, Qu X, Li H, Yang C. Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122728. [PMID: 37844861 DOI: 10.1016/j.envpol.2023.122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Due to the adverse effects of long-term oxytetracycline (OTC) residues in aquatic environments, an effective treatment is urgently needed. Immobilized microbial technology has been widely explored in the treatment of various organic pollutants in aquatic environments with its excellent environmental adaptability. Nevertheless, studies on its application in the removal of antibiotics are relatively scarce and not in sufficient depth. Only a few studies have further investigated the final fate of antibiotics in the immobilized bacteria system. In this study, a novel kind of OTC-degrading bacteria Mycolicibacterium sp. was immobilized on straw biochar and magnetic biochar, respectively. Magnetic biochar was proved to be a more satisfactory immobilization carrier due to its superior property and the advantage of easy recycling. Compared with free bacteria, immobilized bacteria had stronger environmental adaptability under different OTC concentrations, pH, and heavy metal ions. After 5 cycles, immobilized bacteria could still remove 71.8% of OTC, indicating that it had a stable recyclability. Besides, OTC in real swine wastewater was completely removed by immobilized bacteria within 2 days. The results of FTIR showed that bacteria were successfully immobilized on biochar and O-H, N-H, and C-N groups might be involved in the removal of OTC. The fate analysis indicated that OTC was removed by simultaneous adsorption and biodegradation, while biodegradation (92.8%) played a dominant role in the immobilized bacteria system. Meanwhile, the amount of adsorbed OTC (7.20%) was rather small, which could effectively decrease the secondary pollution of OTC. At last, new degradation pathways of OTC were proposed. This study provides an eco-friendly and effective approach to remedy OTC pollution in wastewater.
Collapse
Affiliation(s)
- Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China.
| | - Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Haoran Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| |
Collapse
|
3
|
Jin Y, Wang J, Gao X, Ren F, Chen Z, Sun Z, Ren P. Spent Coffee Grounds Derived Carbon Loading C, N Doped TiO 2 for Photocatalytic Degradation of Organic Dyes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5137. [PMID: 37512411 PMCID: PMC10385829 DOI: 10.3390/ma16145137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Titanium dioxide (TiO2) is an ideal photocatalyst candidate due to its high activity, low toxicity and cost, and high chemical stability. However, its practical application in photocatalysis is seriously hindered by the wide band gap energy of TiO2 and the prone recombination of electron-hole pairs. In this study, C, N doped TiO2 were supported on spent coffee grounds-derived carbon (ACG) via in situ formation, which was denoted as C, N-TiO2@ACG. The obtained C, N-TiO2@ACG exhibits increased light absorption efficiency with the band gap energy decreasing from 3.31 eV of TiO2 to 2.34 eV, a higher specific surface area of 145.8 m2/g, and reduced recombination rates attributed to the synergistic effect of a spent coffee grounds-derived carbon substrate and C, N doping. Consequently, the optimal 1:1 C, N-TiO2@ACG delivers considerable photocatalytic activity with degradation efficiencies for methylene blue (MB) reaching 96.9% within 45 min, as well as a high reaction rate of 0.06348 min-1, approximately 4.66 times that of TiO2 (0.01361 min-1). Furthermore, it also demonstrated greatly enhanced photocatalytic efficiency towards methyl orange (MO) in the presence of MB compared with a single MO solution. This work provides a feasible and universal strategy of synchronous introducing nonmetal doping and biomass-derived carbon substrates to promote the photocatalytic performance of TiO2 for the degradation of organic dyes.
Collapse
Affiliation(s)
- Yanling Jin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Jiayi Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Xin Gao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Fang Ren
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Zhengyan Chen
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Zhenfeng Sun
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Penggang Ren
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| |
Collapse
|
4
|
Xiong R, Zhou X, Chen K, Xiao Y, Cheng B, Lei S. Oxygen-Defect-Mediated ZnCr 2O 4/ZnIn 2S 4 Z-Scheme Heterojunction as Photocatalyst for Hydrogen Production and Wastewater Remediation. Inorg Chem 2023; 62:3646-3659. [PMID: 36765458 DOI: 10.1021/acs.inorgchem.2c04500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Photocatalysis has long been considered a promising technology in green energy and environmental remediation. Since the poor performance of single components greatly limits the practical applications, the construction of heterostructures has become one of the most important technical means to improve the photocatalytic activity. In this work, based on the synthesis of oxygen-vacancy-rich ZnCr2O4 nanocrystals, ZnCr2O4/ZnIn2S4 composites are prepared via a low-temperature in situ growth, and the oxygen-vacancy-induced Z-scheme heterojunction is successfully constructed. The unique core-shell structure offers a tight interfacial contact, increases the specific surface area, and promotes the rapid charge transfer. Meanwhile, the oxygen-vacancy defect level not only enables wide-bandgap ZnCr2O4 to be excited by visible light enhancing the light absorption, but also provides necessary conditions for the construction of Z-scheme heterojunctions promoting charge separation and migration and allowing more reactive charges. The reaction rates of visible-light-driven photocatalytic hydrogen production (3.421 mmol g-1 h-1), hexavalent chromium reduction (0.124 min-1), and methyl orange degradation (0.067 min-1) of the composite reach 3.6, 6.5, and 8.4 times those of pure ZnIn2S4, and 15.8, 41.3, and 67.0 times those of pure ZnCr2O4, respectively. This work presents a novel option for constructing high-performance photocatalysts.
Collapse
Affiliation(s)
- Renzhi Xiong
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiaoheng Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.,Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Keqin Chen
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.,School of Arts and Sciences, New York University Shanghai, Shanghai 200126, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
5
|
Whole genome sequencing exploitation analysis of dibutyl phthalate by strain Stenotrophomonas acidaminiphila BDBP 071. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Gosai HB, Panseriya HZ, Patel PG, Patel AC, Shankar A, Varjani S, Dave BP. Exploring bacterial communities through metagenomics during bioremediation of polycyclic aromatic hydrocarbons from contaminated sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156794. [PMID: 35738384 DOI: 10.1016/j.scitotenv.2022.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The goal of this study was to evaluate the degradation effectiveness of PAHs degrading bacteria at the mesocosm level, including Stenotrophomonas maltophilia (SC), mixed culture (MC), and enriched native microflora (EC) at the mesocosm level. Maximum degradation was found in the mesocosm MC (26.67 %), followed by SC (25.08 %) and EC (18.25 %) after 60 days. Thus, mixed culture and Stenotrophomonas maltophilia could be a game changer in the PAHs bioremediation at the chronically contaminated sites. MiSeq sequencing has revealed dominancy of γ-Proteobacteria, α-Proteobacteria, β-Proteobacteria at class level and Sphingomonadales, oceanospirillales, Rhodothermales at Order level. Families Alcanivoracaceae, Alteromonadaceae, Nocardiaceae, Rhodospirillaceae and genus Stenotrophomonas, Alcanivorax, Methylophaga, Fluviicola and Rhodoplanes were considerably increased which play key role in the PAHs degradation. Dominant bacterial communities have revealed resilience community to enable potential PAHs degradation process in all the mesocosms. To the best our knowledge this is the first ever attempt in PAHs biodegradation study conducted at the mesocosm level mimicking natural environmental conditions. Consequently, this study could be a benchmark against which future progress studies for the policy makers and stakeholders to design appropriate bioremediation study for the historically PAHs polluted contaminate sites.
Collapse
Affiliation(s)
- Haren B Gosai
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur-Kadi, Mehasana, Gujarat, India; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Haresh Z Panseriya
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India; Gujarat Ecology Society, Synergy House, Subhanpura, Vadodara, Gujarat, India
| | - Payal G Patel
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur-Kadi, Mehasana, Gujarat, India
| | - Ajay C Patel
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur-Kadi, Mehasana, Gujarat, India
| | - Alka Shankar
- Department of Plant Molecular Biology, University of Delhi, South Campus, Dhaula Kuan, New Delhi, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Bharti P Dave
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur-Kadi, Mehasana, Gujarat, India; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India.
| |
Collapse
|