1
|
Wei Y, Xia W, Qian Y, Rong C, Ye M, Chen Y, Kikuchi J, Li YY. Revealing microbial compatibility of partial nitritation/Anammox biofilm from sidestream to mainstream applications: Origins, dynamics, and interrelationships. BIORESOURCE TECHNOLOGY 2024; 418:131963. [PMID: 39653175 DOI: 10.1016/j.biortech.2024.131963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Biofilms offer a solution to the challenge of low biomass retention faced in mainstream partial nitritation/Anammox (PN/A) applications. In this study, a one-stage PN/A reactor derived from initial granular sludge was successfully transformed into a biofilm system using shedding carriers. Environmental stressors, such as ammonium nitrogen concentration and organic matter, significantly affected the competitive dynamics and dominant species composition between Ca. Kuenenia and Ca. Brocadia. Under approximately 500 mg/L NH4+-N, Ca. Brocadia emerged as the dominant anammox bacteria species, but was subsequently replaced by Ca. Kuenenia in the presence of approximately 54 mg COD/L CH3COONa. Moreover, Chloroflexi species on the original biofilm exhibited an associated relationship with the growth of Ca. Kuenenia in new biofilm. The biofilm assembly and microbial community migration uniquely reveal the microbial niche dynamics. This study provides valuable insights for PN/A biofilm applications facing diverse challenges of environmental stresses in the transition from sidestream to mainstream.
Collapse
Affiliation(s)
- Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weizhe Xia
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
2
|
Jiang Z, He Y, Zeng M, Zhang Y, Xu X, Zhang M. Revealing critical functional enzymes in anammox nitrogen removal and rate-limiting step in catalytic pathways: Insight into metaproteomics and density functional theory. BIORESOURCE TECHNOLOGY 2024; 406:131090. [PMID: 38986880 DOI: 10.1016/j.biortech.2024.131090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of -4.91 ± 1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.
Collapse
Affiliation(s)
- Zhicheng Jiang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, China
| | - Yuhang He
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, China.
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xinxin Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Yang S, Peng Y, Hou F, Pang H, Jiang L, Sun S, Li J, Zhang L. Rapid establishment of municipal sewage partial denitrification-anammox for nitrogen removal through inoculation with side-stream anammox biofilm without domestication. BIORESOURCE TECHNOLOGY 2024; 400:130679. [PMID: 38588781 DOI: 10.1016/j.biortech.2024.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by ∼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Feng Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Hongtao Pang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Leyong Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Zhang W, Liang S, Grossart HP, Christie-Oleza JA, Gadd GM, Yang Y. Convergence effect during spatiotemporal succession of lacustrine plastisphere: loss of priority effects and turnover of microbial species. ISME COMMUNICATIONS 2024; 4:ycae056. [PMID: 38711932 PMCID: PMC11073396 DOI: 10.1093/ismeco/ycae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Succession is a fundamental aspect of ecological theory, but studies on temporal succession trajectories and ecological driving mechanisms of plastisphere microbial communities across diverse colonization environments remain scarce and poorly understood. To fill this knowledge gap, we assessed the primary colonizers, succession trajectories, assembly, and turnover mechanisms of plastisphere prokaryotes and eukaryotes from four freshwater lakes. Our results show that differences in microbial composition similarity, temporal turnover rate, and assembly processes in the plastisphere do not exclusively occur at the kingdom level (prokaryotes and eukaryotes), but also depend on environmental conditions and colonization time. Thereby, the time of plastisphere colonization has a stronger impact on community composition and assembly of prokaryotes than eukaryotes, whereas for environmental conditions, the opposite pattern holds true. Across all lakes, deterministic processes shaped the assembly of the prokaryotes, but stochastic processes influenced that of the eukaryotes. Yet, they share similar assembly processes throughout the temporal succession: species turnover over time causes the loss of any priority effect, which leads to a convergent succession of plastisphere microbial communities. The increase and loss of microbial diversity in different kingdoms during succession in the plastisphere potentially impact the stability of entire microbial communities and related biogeochemical cycles. Therefore, research needs to integrate temporal dynamics along with spatial turnovers of the plastisphere microbiome. Taking the heterogeneity of global lakes and the diversity of global climate patterns into account, we highlight the urgency to investigate the spatiotemporal succession mechanism of plastisphere prokaryotes and eukaryotes in more lakes around the world.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Hans-Peter Grossart
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany
- Institute for Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | | | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
6
|
Kang D, Zhang L, Yang S, Li J, Peng Y. Linking morphological features to anammox communities in a partial nitritation and anammox (PN/A) biofilm reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118038. [PMID: 37121181 DOI: 10.1016/j.jenvman.2023.118038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
Partial nitritation/anammox (PN/A) has been recognized as a cost-efficient process for wastewater nitrogen removal. The addition of carriers could help achieve biomass retention and enhance the treatment efficiency by forming the dense biofilm. However, accurately determining the abundance of anammox bacteria (AnAOB) to evaluate the biofilm development still remains challenging in practice without access to specialized facilities and experimental skills. In this study, we explored the feasibility of utilizing the morphological features of anammox biofilm as an indication of the biofilm development progression, and its correlation with microbial communities was also revealed. The time-series biofilms from an integrated fixed-film activated sludge (IFAS) system with stable PN/A performance were sampled representing the different biofilm development stages. The biofilm morphological features including color and texture were respectively quantified by red (R) coordinate and Local binary pattern (LBP) descriptor via image processing. Hierarchy clustering analysis proved that the extracted morphological descriptors could well distinguish the different stages (colonization, succession, and maturation) of biofilm development. The microbial community dynamics of time-series anammox biofilms were investigated using the amplicon sequence variant (ASV) analysis. Candidatus Brocadia, as the typical AnAOB, dominated in the whole communities of 16.3%-20.0%, moreover, the biofilm development was found to be driven by distinct Brocadia species. Linear regression evidenced that the Brocadia abundance could be directly correlated to the value of R and LBP, and the total variation of microbial communities could be significantly explained by the morphological features via redundancy analysis. This study demonstrates a new way to monitor the biofilm development by extracting the visible features of anammox aggregates, which can help facilitate the automated control of anammox-based bioprocess.
Collapse
Affiliation(s)
- Da Kang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, China.
| |
Collapse
|
7
|
Liu W, Ji Y, Long Y, Huang W, Zhang C, Wang H, Xu Y, Lei Z, Huang W, Liu D. The role of light wavelengths in regulating algal-bacterial granules formation, protein and lipid accumulation, and microbial functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117750. [PMID: 36934501 DOI: 10.1016/j.jenvman.2023.117750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
High value-added products recovery from algal-bacterial granular sludge (ABGS) has received great attention recently. This study aimed to explore the role of different light wavelengths in regulating granule formation, protein and lipid production, and microbial functions. Bacterial granular sludge (BGS, R0) was most conducive to forming ABGS under blue (R2) light with the highest chlorophyll a (10.2 mg/g-VSS) and diameter (1800 μm), followed by red (R1) and white (R3) lights. R0-R3 acquired high protein contents (>164.8 mg/g-VSS) with essential amino acids above 44.4%, all of which were suitable for recycling, but R2 was the best. Also, blue light significantly increased total lipid production, while red light promoted the accumulation of some unsaturated fatty acids (C18:2 and C18:3). Some unique algae and dominant bacteria (e.g., Stigeoclonium, Chlamydomonas, and Flavobacteria) enrichment and some key functions (e.g., amino acid, fatty acid, and lipid biosynthesis) up-regulation in R2 might help to improve proteins and lipids quality. Combined, this study provides valuable guidance for protein and lipid recovery from ABGS.
Collapse
Affiliation(s)
- Wenhao Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Ji
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhan Long
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Renmin Road, Haikou 570228, China
| | - Chuanbing Zhang
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Huifang Wang
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Yahui Xu
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, Henan 450000, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Fang GY, Mu XJ, Huang BW, Wu GZ, Jiang YJ. Fungal biodiversity and interaction complexity were the important drivers of multifunctionality for flavor production in a spontaneously fermented vinegar. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Liu W, Zhou H, Zhao W, Wang C, Wang Q, Wang J, Wu P, Shen Y, Ji X, Yang D. Rapid initiation of a single-stage partial nitritation-anammox process treating low-strength ammonia wastewater: Novel insights into biofilm development on porous polyurethane hydrogel carrier. BIORESOURCE TECHNOLOGY 2022; 357:127344. [PMID: 35605773 DOI: 10.1016/j.biortech.2022.127344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Media-supported biofilm is a powerful strategy for growth and enrichment of slow-growing microorganisms. In this study, a single-stage nitritation-anammox process treating low-strength wastewater was successfully started to investigate the biofilm development on porous polyurethane hydrogel carrier. Suspended biomass migration into the carrier and being entrapment by its internal interconnected micropores dominated the fast initial colonization stage. Both surface-attached growth and embedded growth of microbes occurred during the following accumulation stage. Fluorescence in situ hybridization analysis of mature biofilm indicated that ammonium-oxidizing bacteria located at the outer layers featured a surface-attached growth, while anammox microcolonies housed in the inner layers proliferated as an embedded-like growth. In this way, the growth rate of anammox bacteria (predominated by Candidatus Kuenenia) could be 0.079 d-1. The anammox potential of the biofilm reactor reached 1.65 ± 0.3 kg/m3/d within two months. This study provides novel insights into nitritation-anammox biofilm formation on the porous polyurethane hydrogel carrier.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Han Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Caixia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|