1
|
Zhang Z, Xing J, Li X, Lu X, Liu G, Qu Y, Zhao J. Review of research progress on the production of cellulase from filamentous fungi. Int J Biol Macromol 2024; 277:134539. [PMID: 39122065 DOI: 10.1016/j.ijbiomac.2024.134539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Cellulases have been widely used in many fields such as animal feed, textile, food, lignocellulose bioconversion, etc. Efficient and low-cost production of cellulases is very important for its industrial application, especially in bioconversion of lignocellulosic biomass. Filamentous fungi are currently widely used in industrial cellulase production due to their ability to secrete large amounts of active free cellulases extracellularly. This review comprehensively summarized the research progress on cellulases from filamentous fungi in recent years, including filamentous fungi used for cellulase production and its modification strategies, enzyme compositions, characterization methods and application of fungal cellulase systems, and the production of fungal cellulase includes production processes, factors affecting cellulase production such as inducers, fermentation medium, process parameters and their control strategies. Also, the future perspectives and research topics in fungal cellulase production are presented in the end of the review. The review helps to deepen the understanding of the current status of fungal cellulases, thereby promoting the production technology progress and industrial application of filamentous fungal cellulase.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Chen Q, Li Z, Li Y, Liu M, Wu Y, Chen Z, Zhu B. Biodegradation of benzo[a]pyrene by a marine Chlorella vulgaris LH-1 with heterotrophic ability. MARINE POLLUTION BULLETIN 2024; 198:115848. [PMID: 38029673 DOI: 10.1016/j.marpolbul.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
In this study, a microalga, Chlorella vulgaris LH-1, with heterotrophic ability to degrade BaP was explored. The effect of BaP concentration on microalga growth was investigated, and the possible biodegradation mechanism of BaP was proposed. Results showed that low BaP concentration (<5 mg/L) had less negative influence on the growth of this microalga under mixotrophic condition, but high BaP concentration (>5 mg/L) had a significant inhibitory effect on its growth. During heterotrophic cultivation, low BaP concentration (<20 mg/L) promoted the growth of C. vulgaris LH-1, whereas high BaP concentration (>20 mg/L) inhibited its growth significantly. The degradation rates of mixotrophic and heterotrophic C. vulgaris LH-1 were 62.56 %-74.13 % and 52.07 %-71.67 %, respectively, when the BaP concentration ranged from 0.5 mg/L to 2 mg/L. The expression of functional enzyme genes of C. vulgaris LH-1 such as phenol 2-monooxygenase activity, protocatechuate 3,4-dioxygenase activity, catechol 1,2-dioxygenase activity, styrene degradation, and benzoate degradation were upregulated in the process of BaP degradation. C. vulgaris LH-1 may degrade BaP by monooxygenase and dioxygenase simultaneously. The degradation of BaP by this microalga under mixotrophic condition goes through the degradation pathway of phthalic acid, whereas it goes through the degradation pathway of benzoic acid under heterotrophic condition.
Collapse
Affiliation(s)
- Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenzhen Li
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Yijing Li
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yingqi Wu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec H3G1M8, Canada
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
3
|
Sai Preethi P, Hariharan NM, Vickram S, Rameshpathy M, Manikandan S, Subbaiya R, Karmegam N, Yadav V, Ravindran B, Chang SW, Kumar Awasthi M. Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. BIORESOURCE TECHNOLOGY 2022; 359:127444. [PMID: 35691504 DOI: 10.1016/j.biortech.2022.127444] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The bioremediation of emerging recalcitrant pollutants in wastewater via enzyme biotechnology has been evolving as cost-effective with an input of low-energy technological approach. However, the enzyme based bioremediation technology is still not fully developed at a commercial level. The oxidoreductases being the domineering biocatalysts are promising candidates for wastewater treatments. Henceforth, comprehending their global market and biotransformation efficacy is mandatory for establishing these techno-economic bio-enzymes in commercial scale. The biocatalytic strategy can be established as a combinatorial approach with existing treatment technology to achieve towering bioremediation and effective removal of emerging pollutants from wastewater. This review provides a novel insight on the toxicological xenobiotics released from industries such as paper and pulps, soap and detergents, pharmaceuticals, textiles, pesticides, explosives and aptitude of peroxidases, nitroreductase and cellobiose dehydrogenase in their bio-based treatment. Moreover, the review comprehensively covers environmental relevance of wastewater pollution and the critical challenges based on remediation achieved through biocatalysts for future prospectives.
Collapse
Affiliation(s)
- P Sai Preethi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam - 600 123, Tamil Nadu, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam - 600 123, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - M Rameshpathy
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
4
|
Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. SUSTAINABILITY 2022. [DOI: 10.3390/su14074328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, and nanoremediation through different soil management tools. Mushrooms can play a vital role in the soil through bio-nanoremediation, especially under the biological synthesis of nanoparticles, which could be used in the bioremediation process. This review focuses on the green synthesis of nanoparticles using mushrooms and the potential of bio-nanoremediation for polluted soils. The distinguished roles of mushrooms of soil improvement are considered a crucial dimension for sustainable soil management, which may include controlling soil erosion, improving soil aggregates, increasing soil organic matter content, enhancing the bioavailability of soil nutrients, and resorting to damaged and/or polluted soils. The field of bio-nanoremediation using mushrooms still requires further investigation, particularly regarding the sustainable management of soils.
Collapse
|