1
|
Leininger A, Lu S, Jiang J, Bian Y, May HD, Ren ZJ. The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100459. [PMID: 39262839 PMCID: PMC11387266 DOI: 10.1016/j.ese.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 09/13/2024]
Abstract
Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (Lactococcus, Lactobacillus, Weissella) to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% L. plantarum retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched Lactococcus and Klebsiella spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.
Collapse
Affiliation(s)
- Aaron Leininger
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Sidan Lu
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Jinyue Jiang
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Yanhong Bian
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Harold D May
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| |
Collapse
|
2
|
Zhao J, Ma H, Gao M, Qian D, Wang Q, Shiung Lam S. Advancements in medium chain fatty acids production through chain elongation: Key mechanisms and innovative solutions for overcoming rate-limiting steps. BIORESOURCE TECHNOLOGY 2024; 408:131133. [PMID: 39033828 DOI: 10.1016/j.biortech.2024.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The depletion of fossil fuels has prompted an urgent search for alternative chemicals from renewable sources. Current technology in medium chain fatty acids (MCFAs) production though chain elongation (CE) is becoming increasingly sustainable, hence the motivation for this review, which provides the detailed description, insights and analysis of the metabolic pathways, substrates type, inoculum and fermentation process. The main rate-limiting steps of microbial MCFAs production were comprehensively revealed and the corresponding innovative solutions were also critically evaluated. Innovative strategies such as substrate pretreatment, electrochemical regulation, product separation, fermentation parameter optimization, and electroactive additives have shown significant advantages in overcoming the rate-limiting steps. Furthermore, novel regulatory strategies such as quorum sensing and electronic bifurcation are expected to further increase the MCFAs yield. Finally, the techno-economic analysis was carried out, and the future research focuses were also put forward.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Resource and Environmental Science, Yili Normal University, Yining 835000, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
3
|
Wang Z, Fernández-Blanco C, Chen J, Veiga MC, Kennes C. Effect of electron acceptors on product selectivity and carbon flux in carbon chain elongation with Megasphaera hexanoica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169509. [PMID: 38141983 DOI: 10.1016/j.scitotenv.2023.169509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Megasphaera hexanoica is a bacterial strain following the reverse β-oxidation pathway to synthesize caproate (CA) using lactate (LA) as an electron donor (ED) and acetate (AA) or butyrate (BA) as electron acceptors (EA). Differences in the type and concentration of EA lead to distinctions in product distribution and energy bifurcation of carbon fluxes in ED pathways, thereby affecting CA production. In this study, the effect of various ratios of AA, BA, and AA+BA as EA on carbon flux and CA specific titer during the carbon chain elongation in M. hexanoica was explored. The results indicated that the maximum levels of CA were 18.81 mM and 31.48 mM when the molar ratios of LA/AA and LA/BA were 10:1 and 3:1, respectively. Meanwhile, when AA and BA were used as combined EA (LA, AA, and BA molar amounts of 100, 23, and 77 mM), a maximum CA production of 39.45 mM was obtained. Further analysis revealed that the combined EA exhibited a CA production carbon flux of 49 % (4.3 % and 19.5 % higher compared to AA or BA, respectively) and a CA production specific titer of 45.24 mol (80.89 % and 58.51 % higher compared to AA or BA, respectively), indicating that the effective carbon utilization rate and CA production efficiency were greatly improved. Finally, a scaled-up experiment was conducted in a 1.2 L (working volume) automated bioreactor, implying high biomass (optical density at 600 nm or OD600 = 1.809) and a slight decrease in CA production (28.45 mM). A decrease in H2 production (4.11 g/m3) and an increase in CO2 production (0.632 g/m3) demonstrated the appropriate metabolic adaptation of M. hexanoica to environmental changes such as stirring shear.
Collapse
Affiliation(s)
- Zeyu Wang
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain.
| |
Collapse
|
4
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, Wu C, Xia C, Qian D, Chong WWF, Lam SS. Product spectrum analysis and microbial insights of medium-chain fatty acids production from waste biomass during liquor fermentation process: Effects of substrate concentrations and fermentation modes. BIORESOURCE TECHNOLOGY 2023; 368:128375. [PMID: 36414142 DOI: 10.1016/j.biortech.2022.128375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.
Collapse
Affiliation(s)
- Jihua Zhao
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Wenyu Wu
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Mohammed Ali Bacar
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dayi Qian
- Department of Environmental Science and Engineering, University of Science and Technology, Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
6
|
Sriram S, Wong JWC, Pradhan N. Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127637. [PMID: 35853590 DOI: 10.1016/j.biortech.2022.127637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Biotransformation of organic substrates via acidogenic fermentation (AF) to high-value products such as C1-C6 carboxylic acids and alcohol serves as platform chemicals for various industrial applications. However, the AF technology suffers from low product titers due to thermodynamic constraints. Recent studies suggest that augmenting AF redox potential can regulate the metabolic pathway and provide seamless electron flow by lowering the activation energy barrier, thus positively influencing the substrate utilization rate, product yield, and speciation. Hence, the augmented AF system with an exogenous electricity supply is termed as electro-fermentation (EF), which has enormous potential to strengthen the fermentation technology domain. Therefore, this critical review systematically discusses the current understanding of EF with a special focus on the extracellular electron transfer mechanism of electroactive bacteria and provides perspectives and research gaps to further improve the technology for green chemical synthesis, sustainable waste management, and circular bio-economy.
Collapse
Affiliation(s)
- Saranya Sriram
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR
| | - Jonathan W C Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| |
Collapse
|