1
|
Luo Y, Sun Y, Wang H, He Y, Zhang Y, Lei H, Yang H, Wei J, Xu D. An electrochemical aptasensor based on C-ZIF-67@PAN nanofibers for detection of ampicillin in milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39651638 DOI: 10.1039/d4ay02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
C-ZIF-67@PAN nanofibers are prepared as an active material for ampicillin (AMP) detection. Metal organic frameworks (MOFs) can provide larger specific surface area and more binding sites. The PAN fiber in the further carbonization process can make ZIF-67 orderly arranged, enhance the conductivity of the material, and make the response more sensitive. Gold nanoparticles are incorporated into the material, and the aptamer is closely combined with the material by using the Au-S bond to further enhance the conductivity of the material. Under optimized conditions, the sensor has a wide detection range (0.001-100 μM) and a low detection limit (0.67 nM). In addition, the C-ZIF-67@PAN@Au@Apta sensor is successfully applied to AMP residues in milk samples with a recovery rate of 92.77-101.95%.
Collapse
Affiliation(s)
- Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Haoxiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yuyang He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yuxun Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Hailu Lei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Hong Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jinhao Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Wang K, Yang S, Yu X, Liu Y, Bai M, Xu Y, Weng L, Li Y, Li X. Effect of microplastics on the degradation of tetracycline in a soil microbial electric field. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132313. [PMID: 37619277 DOI: 10.1016/j.jhazmat.2023.132313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The degradation of organic pollutants and the adsorption of organic pollutants onto microplastics (MPs) in the environment have recently been intensively studied, but the effects of biocurrents, which are widespread in various soil environments, on the environmental behavior of MPs and antibiotic pollutants have not been reported. In this study, it was found that polylactic acid (PLA) and polyvinyl chloride (PVC) MPs accelerated the mineralization of humic substances in microbial electrochemical systems (MESs). After tetracycline (TC) was introduced into the MESs, the internal resistance of the soil MESs decreased. Additionally, the presence of MPs enhanced the charge output of the soil MESs by 40% (PLA+TC) and 18% (PVC+TC) compared with a control group without MPs (424 C). The loss in MP mass decreased after TC was added, suggesting a promotion of TC degradation rather than MP degradation for charge output. MPs altered the distribution of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of TC molecules and reduced the energy barrier for the TC hydrolysis reaction. The microbial community of the plastisphere exhibited a greater ability to degrade xenobiotics than the soil microbial community, indicating that MPs were hotspots for TC degradation. This study provides the first glimpse into the influence of MPs on the degradation of TC in MESs, laying a theoretical and methodological foundation for the systematic evaluation of the potential risks of environmental pollutants in the future.
Collapse
Affiliation(s)
- Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
4
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
5
|
Naha A, Antony S, Nath S, Sharma D, Mishra A, Biju DT, Madhavan A, Binod P, Varjani S, Sindhu R. A hypothetical model of multi-layered cost-effective wastewater treatment plant integrating microbial fuel cell and nanofiltration technology: A comprehensive review on wastewater treatment and sustainable remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121274. [PMID: 36804140 DOI: 10.1016/j.envpol.2023.121274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.
Collapse
Affiliation(s)
- Aniket Naha
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla-689 101, Kerala, India
| | - Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla-689 101, Kerala, India
| | - Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar-788004, India
| | - Dhrubjyoti Sharma
- Biological Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar, 382 355 India
| | - Anamika Mishra
- Department of Biotechnology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Devika T Biju
- Department of Biomedical Science, University of Salford, England, M5 4WT, United Kingdom
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam-690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691 505, Kerala, India.
| |
Collapse
|
6
|
Chang C, Gupta P. Exploring the Oxidative Effects of the Microbial Electro-Fenton Process on the Depolymerization of Lignin Extracted from Rice Straw in a Bio-Electrochemical System Coupled with Wastewater Treatment. Biomacromolecules 2023; 24:1220-1232. [PMID: 36800267 DOI: 10.1021/acs.biomac.2c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Lignin is a potential renewable feedstock to produce value-added compounds, but the overwhelming bulk of it is either burned for energy or discarded as waste. This paper addressed two critical issues: waste-to-value generation and management by demonstrating the in situ depolymerization of lignin extracted from waste rice straw utilizing the microbial electro-Fenton process in a microbial peroxide-producing cell (MPPC), a type of bio-electrochemical cell, for value addition while synchronously treating wastewater. The MPPC electrochemical voltage yields of 0.171 ± 0.05-0.497 ± 0.2 V produced 9 ± 0.43-34 ± 0.11 mM of H2O2, which was utilized to depolymerize lignin at various concentrations. Interestingly, a direct correlation was observed between lignin depolymerization and H2O2 concentration, while Fourier-transform infrared spectroscopy data revealed a constant disruption of the lignin structure accurately in the wavenumber region of 1000-1750 cm-1 irrespective of the H2O2 concentration. Carboxylic acid derivatives, benzopyran, hexanoic acid, and other valuable compounds were detected in the LC QTOF MS data from the depolymerized lignin mixture. Remarkably, SEM analysis demonstrated morphological changes in depolymerized lignin induced by the oxidative effects of hydroxyl radicals. Biochemical oxygen demand and chemical oxygen demand removal was 60 ± 3-85 ± 1% in anodic wastewater treatment. This research provides a sustainable and efficient technique for lignin valorization and wastewater treatment.
Collapse
Affiliation(s)
- Changsomba Chang
- Department of Biotechnology, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
7
|
Xu N, Hu C, Zhu Z, Wang W, Peng H, Liu B. Establishment of a novel system for photothermal removal of ampicillin under near-infrared irradiation: Persulfate activation, mechanism, pathways and bio-toxicology. J Colloid Interface Sci 2023; 640:472-486. [PMID: 36871512 DOI: 10.1016/j.jcis.2023.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
One of the most effective ways to address the problems of low solar spectrum utilization in photocatalysis and the high cost of persulfate activation technology is to create a cost-effective synergistic photothermal persulfate system. In this work, a brand-new composite catalyst called ZnFe2O4/Fe3O4@MWCNTs (ZFC) was developed to activate PDS (K2S2O8) from the aforementioned basis. ZFC's surface temperature could unbelievably reach 120.6 °C in 150 s together with the degrading synergistic system solution temperature could reach 48 °C under near-infrared light (NIR) in 30 min, thus accelerating the ZFC/PDS decolorization rate for reactive blue KN-R (150 mg/L) to 95% in 60 min. Furthermore, the ZFC's ferromagnetism bore it with good cycling performance, allowing it to maintain an 85% decolorization rate even after 5 cycles with OH·, SO4-·, 1O2, and O2-· dominating the degrading process. In the meantime, the DFT calculations of the kinetic constants for the entire process of S2O82- adsorption on Fe3O4 in dye degradation solution were in agreement with the outcomes of the experimental pseudo-first-order kinetic fitting. By analyzing the particular degradation route of ampicillin (50 mg/L) and the possible environmental impact of the intermediate using LC-MS and the toxicological analysis software (T.E.S.T.), respectively, it was shown that this system might function as an environmentally friendly method for removing antibiotics. This work may provide some productive research lines for the creation of a photothermal persulfate synergistic system and suggest fresh approaches to water treatment technology.
Collapse
Affiliation(s)
- Nan Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Huitao Peng
- ANTA (China) Co. Ltd., Jinjiang 362212, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|