1
|
Wang L, Ji Y, Wang L, Cao J, Wang F, Li C. Fluorescent multichannel sensor array based on three carbon dots derived from Tibetan medicine waste for the quantification and discrimination of multiple heavy metal ions in water. Mikrochim Acta 2024; 191:254. [PMID: 38594554 DOI: 10.1007/s00604-024-06340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "μM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 μM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yang Ji
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Lu Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jia Cao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Rodríguez-Quesada L, Ramírez-Sánchez K, León-Carvajal S, Sáenz-Arce G, Vásquez-Sancho F, Avendaño-Soto E, Montero-Rodríguez JJ, Starbird-Perez R. Evaluating the Effect of Iron(III) in the Preparation of a Conductive Porous Composite Using a Biomass Waste-Based Starch Template. Polymers (Basel) 2023; 15:polym15112560. [PMID: 37299358 DOI: 10.3390/polym15112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, the effect of iron(III) in the preparation of a conductive porous composite using a biomass waste-based starch template was evaluated. Biopolymers are obtained from natural sources, for instance, starch from potato waste, and its conversion into value-added products is highly significant in a circular economy. The biomass starch-based conductive cryogel was polymerized via chemical oxidation of 3,4-ethylenedioxythiophene (EDOT) using iron(III) p-toluenesulfonate as a strategy to functionalize porous biopolymers. Thermal, spectrophotometric, physical, and chemical properties of the starch template, starch/iron(III), and the conductive polymer composites were evaluated. The impedance data of the conductive polymer deposited onto the starch template confirmed that at a longer soaking time, the electrical performance of the composite was improved, slightly modifying its microstructure. The functionalization of porous cryogels and aerogels using polysaccharides as raw materials is of great interest for applications in electronic, environmental, and biological fields.
Collapse
Affiliation(s)
- Laria Rodríguez-Quesada
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos (CEQIATEC), Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Sebastián León-Carvajal
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Giovanni Sáenz-Arce
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Heredia 86-3000, Costa Rica
- Centro de Investigación en Óptica y Nanofísica, Departamento de Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Fabián Vásquez-Sancho
- Materials Research Science and Engineering Center (CICIMA), University of Costa Rica, San José 11501-2060, Costa Rica
- School of Physics, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Esteban Avendaño-Soto
- Materials Research Science and Engineering Center (CICIMA), University of Costa Rica, San José 11501-2060, Costa Rica
- School of Physics, University of Costa Rica, San José 11501-2060, Costa Rica
| | | | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos (CEQIATEC), Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
3
|
Awasthi MK, Sar T, Gowd SC, Rajendran K, Kumar V, Sarsaiya S, Li Y, Sindhu R, Binod P, Zhang Z, Pandey A, Taherzadeh MJ. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. FUEL 2023; 342:127790. [DOI: 10.1016/j.fuel.2023.127790] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
4
|
Lim SJ, Son M, Ki SJ, Suh SI, Chung J. Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction. BIORESOURCE TECHNOLOGY 2023; 370:128518. [PMID: 36565818 DOI: 10.1016/j.biortech.2022.128518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Recent advances in machine learning (ML) have revolutionized an extensive range of research and industry fields by successfully addressing intricate problems that cannot be resolved with conventional approaches. However, low interpretability and incompatibility make it challenging to apply ML to complicated bioprocesses, which rely on the delicate metabolic interplay among living cells. This overview attempts to delineate ML applications to bioprocess from different perspectives, and their inherent limitations (i.e., uncertainties in prediction) were then discussed with unique attempts to supplement the ML models. A clear classification can be made depending on the purpose of the ML (supervised vs unsupervised) per application, as well as on their system boundaries (engineered vs natural). Although a limited number of hybrid approaches with meaningful outcomes (e.g., improved accuracy) are available, there is still a need to further enhance the interpretability, compatibility, and user-friendliness of ML models.
Collapse
Affiliation(s)
- Seung Ji Lim
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Moon Son
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seo Jin Ki
- Department of Environmental Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sang-Ik Suh
- Department of Energy System Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
5
|
Zhang Q, Shui X, Awasthi MK, Zhang T, Yang J, Zhang H, Chen Z, Zou C, Jiang D. 1-Butyl-3-methylimidazolium acetate pretreatment of giant reed triggering yield improvement of biohydrogen production via photo-fermentation. BIORESOURCE TECHNOLOGY 2022; 364:128068. [PMID: 36202280 DOI: 10.1016/j.biortech.2022.128068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Ionic liquids (ILs) have been considered as promising alternatives to traditional reagent for lignocellulosic biomass pretreatment because of their tunable physicochemical and "green" properties. In the study, the influence of 1-Butyl-3-methylimidazolium acetate ([Bmim]acetate) pretreatment of giant reed on H2 yield improvement via photo-fermentation (PF) was evaluated. Under the optimal pretreatment conditions (6 g/L [Bmim]acetate at 70 °C for 4 h), the delignification of giant reed was up to 26.7 %. In addition, the sugar yield (9.5 g/L) and hydrogen yield (72.3 mL/g TS) from giant reed were enhanced by 1.7-fold and 61.7 % over those of untreated giant reed, respectively. Moreover, ternary analysis showed that retention time had the strongest effect on delignification, sugar yield and hydrogen yield of giant reed compared to pretreatment temperature and [Bmim]acetate loading. These experimental results indicated that [Bmim]acetate pretreatment of giant reed is an effective approach to enhance the hydrogen yield via PF.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xuenan Shui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Tian Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jiabin Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhou Chen
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Caihong Zou
- College of Mechanical and Electrical Engineering of Henan Agricultural University, Zhengzhou 450002, PR China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|