1
|
Xian S, Xie Y, Xu Q, Yang Z, Li H, Wu Y. Mechanism insight into the conversion between COS and thiophene during CO 2 gasification of carbon-based fuels. Sci Rep 2024; 14:15989. [PMID: 38987351 PMCID: PMC11237078 DOI: 10.1038/s41598-024-67180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Thiophene is the organic sulfur with good thermal stability in carbon-based fuel, clarifying the conversion mechanism between thiophene and COS is beneficial for achieving in-situ sulfur fixation during CO2 gasification of carbon-based fuels, but the mechanism has rarely been reported. Therefore, calculations based on density functional theory were performed and 16 reaction paths were proposed in this research, clarifying the decomposition mechanism of thiophene and re-fixation mechanism of COS. The attachment of CO2 will lead to the destruction of the thiophene ring and the generation of COS, and CO2 adsorption is the rate-determined step, while the carbon atom that adjacent sulfur atom is the reaction active site. However, the energy barriers of CO2 addition reactions are lower than those of CO2 adsorption reactions, and the energy barrier of reactions occurring on the aliphatics are lower than that occurring on the aromatics. The combination of CO2 and thiophene will thermodynamically lead to the generation of COS and CO. Moreover, gaseous sulfur generated from thiophene decomposition will be converted mutually, while H2S will not be converted into COS. Furthermore, COS will be captured by char, forming solid organic sulfur. The re-fixation of COS will occur on aliphatic chains from the decomposition of aromatics.
Collapse
Affiliation(s)
- Shengxian Xian
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ye Xie
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qing Xu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China.
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Zhisi Yang
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haowei Li
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yujian Wu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Hu Z, Lu W, Zheng Y, Liu J, Haick H, Bu L. Facile Graphene Oxide Modification Method via Hydroxyl-yne Click Reaction for Ultrasensitive and Ultrawide Monitoring Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6198-6207. [PMID: 38276960 PMCID: PMC10859893 DOI: 10.1021/acsami.3c17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Enhancing the durability and functionality of existing materials through sustainable pathways and appropriate structural design represents a time- and cost-effective strategy for the development of advanced wearable devices. Herein, a facile graphene oxide (GO) modification method via the hydroxyl-yne click reaction is present for the first time. By the click coupling between propiolate esters and hydroxyl groups on GO under mild conditions, various functional molecules are successfully grafted onto the GO. The modified GO is characterized by FTIR, XRD, TGA, XPS, and contact angle, proving significantly improved dispersibility in various solvents. Besides the high efficiency, high selectivity, and mild reaction conditions, this method is highly practical and accessible, avoiding the need for prefunctionalizations, metals, or toxic reagents. Subsequently, a rGO-PDMS sponge-based piezoresistive sensor developed by modified GO-P2 as the sensitive material exhibits impressive performance: high sensitivity (335 kPa-1, 0.8-150 kPa), wide linear range (>500 kPa), low detection limit (0.8 kPa), and long-lasting durability (>5000 cycles). Various practical applications have been demonstrated, including body joint movement recognition and real-time monitoring of subtle movements. These results prove the practicality of the methodology and make the rGO-PDMS sponge-based pressure sensor a real candidate for a wide array of wearable applications.
Collapse
Affiliation(s)
- Zhipeng Hu
- School
of Chemistry, Engineering Research Center of Energy Storage Materials
and Devices, Ministry of Education, Xi’an Key Laboratory of
Sustainable Energy Material Chemistry, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
- Department
of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Wanlong Lu
- School
of Chemistry, Engineering Research Center of Energy Storage Materials
and Devices, Ministry of Education, Xi’an Key Laboratory of
Sustainable Energy Material Chemistry, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Youbin Zheng
- Department
of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jiamei Liu
- Instrumental
Analysis Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Hossam Haick
- Department
of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Laju Bu
- School
of Chemistry, Engineering Research Center of Energy Storage Materials
and Devices, Ministry of Education, Xi’an Key Laboratory of
Sustainable Energy Material Chemistry, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
3
|
Supraja KV, Kachroo H, Viswanathan G, Verma VK, Behera B, Doddapaneni TRKC, Kaushal P, Ahammad SZ, Singh V, Awasthi MK, Jain R. Biochar production and its environmental applications: Recent developments and machine learning insights. BIORESOURCE TECHNOLOGY 2023; 387:129634. [PMID: 37573981 DOI: 10.1016/j.biortech.2023.129634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Biochar production through thermochemical processing is a sustainable biomass conversion and waste management approach. However, commercializing biochar faces challenges requiring further research and development to maximize its potential for addressing environmental concerns and promoting sustainable resource management. This comprehensive review presents the state-of-the-art in biochar production, emphasizing quantitative yield and qualitative properties with varying feedstocks. It discusses the technology readiness level and commercialization status of different production strategies, highlighting their environmental and economic impacts. The review focuses on integrating machine learning algorithms for process control and optimization in biochar production, improving efficiency. Additionally, it explores biochar's environmental applications, including soil amendment, carbon sequestration, and wastewater treatment, showcasing recent advancements and case studies. Advances in biochar technologies and their environmental benefits in various sectors are discussed herein.
Collapse
Affiliation(s)
- Kolli Venkata Supraja
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Himanshu Kachroo
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gayatri Viswanathan
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Kumar Verma
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bunushree Behera
- Bioprocess Laboratory, Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Tharaka Rama Krishna C Doddapaneni
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| | - Priyanka Kaushal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sk Ziauddin Ahammad
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
4
|
El jaouhari A, Arif J, Samadhiya A, Kumar A. Net zero supply chain performance and industry 4.0 technologies: Past review and present introspective analysis for future research directions. Heliyon 2023; 9:e21525. [PMID: 38027864 PMCID: PMC10665682 DOI: 10.1016/j.heliyon.2023.e21525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Interest in applying Industry 4.0 technologies in supply chain operations has increased significantly due to the urgent need to combat climate change and achieve net-zero emissions. This study aims to thoroughly comprehend how Industry 4.0 technologies affect the efficiency of net-zero supply chains. To do so, the study systematically reviews the existing research using 68 academic papers that are thematically analysed and classified by potentials associated with Industry 4.0 in the context of net zero supply chain performance. The findings of this systematic literature review highlight the multifaceted role of Industry 4.0 technologies in achieving net-zero supply chain performance. However, the study also identifies challenges related to policy, technology, economy, and markets to harness these technologies effectively. A conceptual framework is proposed to help organizations strategically leverage Industry 4.0 technologies for sustainable supply chain performance. By identifying knowledge gaps, the review provides a roadmap for future research to explore the complex dynamics at the intersection of Industry 4.0 and sustainability. Practically, the study offers valuable insights for supply chain managers and policymakers on the opportunities and challenges associated with adopting Industry 4.0 technologies for sustainable practices. With the goal of achieving net-zero supply chain performance, this paper emphasizes the importance of a holistic, integrated approach to technology adoption and sustainability strategies.
Collapse
Affiliation(s)
- Asmae El jaouhari
- Laboratory of Technologies and Industrial Services, Sidi Mohamed Ben Abdellah University, Higher School of Technology, Fez, Morocco
| | - Jabir Arif
- Laboratory of Technologies and Industrial Services, Sidi Mohamed Ben Abdellah University, Higher School of Technology, Fez, Morocco
| | - Ashutosh Samadhiya
- Jindal Global Business School, OP Jindal Global University, Sonipat, India
| | - Anil Kumar
- Guildhall School of Business and Law, London Metropolitan University, London, N7 8DB, United Kingdom
| |
Collapse
|
5
|
Chan YH, Lock SSM, Chin BLF, Wong MK, Loy ACM, Foong SY, Yiin CL, Lam SS. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy. BIORESOURCE TECHNOLOGY 2023; 380:129061. [PMID: 37075852 DOI: 10.1016/j.biortech.2023.129061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
To achieve the main goal of net zero carbon emission, the shift from conventional fossil-based energy/products to renewable and low carbon-based energy/products is necessary. Biomass has been perceived as a carbon-neutral source from which energy and value-added products can be derived, while sludge is a slurry waste that inherently contains high amount of minerals and organic matters. Hence, thermochemical co-processing of biomass wastes and sludge could create positive synergistic effects, resulting in enhanced performance of the process (higher conversion or yield) and improved qualities or characteristics of the products as compared to that of mono-processing. This review presents the current progress and development for various thermochemical techniques of biomass-sludge co-conversion to energy and high-value products, and the potential applications of these products from circular economy's point of view. Also, these technologies are discussed from economic and environmental standpoints, and the outlook towards technology maturation and successful commercialization is laid out.
Collapse
Affiliation(s)
- Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|