Yang J, Tian H, Guo J, He J. 3D porous carbon-embedded nZVI@Fe
2O
3 nanoarchitectures enable prominent performance and recyclability in antibiotic removal.
CHEMOSPHERE 2023;
331:138716. [PMID:
37076086 DOI:
10.1016/j.chemosphere.2023.138716]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Overcoming the instability and poor recyclability during the practical applications of contaminant scavengers is a challenging topic. Herein, a three-dimensional (3D) interconnected carbon aerogel (nZVI@Fe2O3/PC) embedding a core-shell nanostructure of nZVI@Fe2O3 was elaborately designed and fabricated via an in-situ self-assembly process. The porous carbon with 3D network architecture exhibits strong adsorption towards various antibiotic contaminants in water, where the stably embedded nZVI@Fe2O3 nanoparticles not only serve as magnetic seeds for recycling, but also avoid the shedding and oxidation of nZVI in the adsorption process. As a result, nZVI@Fe2O3/PC efficiently captures sulfamethoxazole (SMX), sulfamethazine (SMZ), ciprofloxacin (CIP), tetracycline (TC) and other antibiotics in water. In particular, an excellent adsorptive removal capacity of 329 mg g-1 and a rapid capture kinetics (99% of removal efficiency in 10 min) under a wide pH adaptability (2-8) are achieved using nZVI@Fe2O3/PC as an SMX scavenger. nZVI@Fe2O3/PC displays exceptional long-term stability given that it shows excellent magnetic property after it is stored in water solution for 60 d, making it an ideal stable scavenger for contaminants in an etching-resistant and efficient manner. This work would also provide a general strategy to develop other stable iron-based functional architectures for efficient catalytic degradation, energy conversion and biomedicine.
Collapse